The text that follows is a PREPRINT.

Please cite as:

Pueyo, S. & P.M. Fearnside s/d. Emissões de gases de efeito estufa dos reservatórios de hidrelétricas: Implicações de uma lei de potência.. *Oecologia Australis* (no prelo)

ISSN: 1980-6442

Copyright: Universidade Federal do Rio de Janeiro

The original publication will be available from: http://www.oecologia.biologia.ufrj.br

EMISSÕES DE GASES DE EFEITO ESTUFA DOS RESERVATÓRIOS DE HIDRELÉTRICAS: IMPLICAÇÕES DE UMA LEI DE POTÊNCIA

Salvador Pueyo¹ & Philip M. Fearnside^{2,*}

¹ Institut Català de Ciències del Clima (IC3), C/ Doctor Trueta 203, Barcelona, 08005, Catalunha, Espanha.

² Instituto Nacional de Pesquisas da Amazônia (INPA), Avenida Andre Araujo, 2936, Caixa postal: 478. Manaus, AM, Brasil. CEP: 69011-970. Emails: spueyo@ic3.cat, pmfearn@inpa.gov.br

RESUMO

Hidrelétricas emitem gases de efeito estufa, sobretudo metano (CH₄), formado pela decomposição de matéria orgânica sob condições anóxicas no fundo dos reservatórios. Uma parte do metano é liberada por ebulição e difusão através da superfície do reservatório, enquanto a outra parte é liberada através da água que passa pelas turbinas e pelos vertedouros. A emissão de metano que ocorre a partir da superfície do reservatório tem sido calculada em estimativas do órgão do governo brasileiro responsável pelo planejamento energético. O cálculo oficial usou uma lei de potência, que resultou em uma estimativa de emissão de CH4 76% menor do que uma média corrigida "básica" que representa a média aritmética das medidas que serviram como a base do cálculo. Expresso em comparação com o valor oficial, a aproximação da média aritmética é 320% mais alta. Mostramos que o ajuste aplicado aos números oficiais estava baseado em vários erros matemáticos e que o valor real deve ser maior, e não menor, que a média aritmética. Comparamos vários possíveis métodos para gerar uma estimativa "corrigida", todos com resultados muito acima dos valores oficiais. Um método melhor foi identificado que indica uma emissão de superfície 345% maior que o valor oficial. Para os 33.000 km² de reservatórios brasileiros, o impacto total da sub-estimativa das emissões de CH₄ pela superfície da água dos reservatórios é próxima daquela gerada pela emissão da queima de combustível fóssil na grande São Paulo, enquanto a emissão total das superfícies de reservatório ultrapassa a emissão dessa cidade. Emissões da água que passa pelas turbinas e vertedouros representam um impacto adicional sobre o aquecimento global.

Palavras-chave: Aquecimento global, Barragens, Brasil, Carbono, Efeito estufa, Metano.

ABSTRACT

EMISSIONS OF GREENHOUSE GASES FROM THE OF RESERVOIRS HYDROELECTRIC DAMS: IMPLICATIONS OF A POSSIBLE POWER LAW. Hydroelectric dams emit greenhouse gases, especially methane (CH_4), which is produced by decomposition of organic matter under anoxic conditions at the bottom of the reservoirs. A part of this gas is released by bubbling and diffusion through the surface of the reservoir, and part from the water that passes through the turbines and spillways. The portion of the emission that occurs through the reservoir surface has been calculated in estimates by the Brazilian government agency responsible for energy planning. The official calculation used a power law that resulted in an estimate of CH₄ 76% lower than a corrected "basic" mean that represents the arithmetic mean of the measurements that served as the basis of the calculation. Expressed in comparison to the official value, the approximation of the arithmetic mean is 320% higher. We show that the adjustment that was applied in the official estimates was based on several mathematical errors, and that the real value should be higher, rather than lower, than the arithmetic mean. We compared various possible methods for generating a "corrected" estimate, all with results far above the official values. A best method was identified that indicates a reservoir-surface emission 345% higher than the official value. For Brazil's 33×10^3 km² of reservoirs, the total impact of the underestimate of surface emissions of CH₄ is almost as large as the emission produced by burning fossil fuels in greater São Paulo, while the total emission of the reservoir surfaces surpasses the emission of this city. Emissions from the water that passes through the turbines and spillways represent an additional impact on global warming.

Key-words: Brazil, Carbon, Dams, Global warming, Greenhouse effect, Methane.

INTRODUÇÃO

Emissões de gases de efeito estufa de reservatórios, especialmente metano (CH₄), foram identificadas primeiramente por Rudd *et al.* (1993) no Canadá. Desde então, uma sucessão de estudos tem estimado as emissões, com resultados e interpretações bastante variados (ver revisão em Fearnside 2008; ver também Ramos *et al.* 2006, DelSontro *et al.* 2010). Santos *et al.* (2008) publicaram um estudo nesta revista onde

argumentaram que emissões de gases de efeito estufa por hidrelétricas, embora existam, são de magnitude substancialmente menor do que as emissões indicadas por várias estimativas na literatura (ex.: Fearnside 2002, Kemenes *et al.* 2007). As estimativas apresentadas por Santos *et al.* (2008) são as mesmas usadas na publicação da ELETROBRÁS (2000) sobre os totais de emissões de metano das superfícies dos reservatórios do País. Os argumentos de Santos *et al.* (2008) e a sua conclusão geral de que as emissões são pequenas tem sido contestadas ao longo de um extenso debate (ex.: Fearnside 2004, 2006, 2008, 2009). No entanto, uma parte da argumentação de Santos *et al.* (2008) ainda necessita de uma investigação mais aprofundada. Isto é o cálculo que estes autores fazem da emissão de gases por ebulição (borbulhamento) e difusão (emanação) através da superfície dos reservatórios. Santos *et al.* (2008) usaram a distribuição da frequência de diferentes magnitudes de emissão (em mg.m⁻².d⁻¹ = kg.km⁻².d⁻¹) nas medidas existentes, juntando as medidas de sete reservatórios brasileiros (Miranda, Três Marias, Barra Bonita, Segredo, Xingó, Samuel e Tucuruí). Esses autores aplicaram o cálculo usando uma lei de potência para ajustar a emissão média estimada **para baixo**, em relação ao valor indicado por uma média simples dos dados mensurados. Aqui, apontamos vários erros nos cálculos de Santos *et al.* (2008), e mostramos que o ajuste deve ser **para cima**, em relação à média simples. Isto implica que há maior impacto das emissões de gases de efeito estufa oriunda dos reservatórios.

Um fenômeno que é caracterizado por muitas ocorrências pequenas e algumas ocorrências grandes, tais como incêndios e terremotos, pode ser melhor representado pela lei de potência do que pela média aritmética das observações. Isto porque qualquer período de amostragem será inadequado para captar os eventos raros de magnitude muito grande. A dificuldade inerente de observar os valores muito grandes logicamente implica que o valor estimado pela lei de potência dos eventos de diferentes tamanhos para cada fenômeno. A lógica da lei de potência, portanto, leva a um ajuste dos valores na direção oposta ao ajuste feito por Santos *et al.* (2008) e ELETROBRÁS (2000) para as emissões das hidrelétricas.

O CÁLCULO DE SANTOS ET AL. (2008): PROBLEMAS E ALTERNATIVAS

Segundo Santos *et al.* (2008), o uso da média aritmética superestima as emissões da superfície de reservatórios de hidrelétricas. Entretanto, esta conclusão está baseada em erros matemáticos. A justificativa das afirmações de Santos *et al.* (2008) se encontra na tese de Santos (2000), e se repete em ELETROBRÁS (2000). Estes estudos presumem que o conjunto das medidas de emissões em distintos momentos e locais segue uma lei de potência. Para esta distribuição, a densidade de probabilidade *f* de uma medida de emissão de *I* mg.m⁻².dia⁻¹ será:

$$f(I) \propto I^{-\lambda}$$

onde o expoente λ é uma constante (" ∞ " significa "proporcional"). Santos *et al.* (2008) presumiram limites mínimo I_{min} e máximo I_{max} da distribuição. Sendo que qualquer distribuição de probabilidade própria deva cumprir

$$\int_{I_{\min}}^{I_{\max}} f(I) dI = 1$$
(1),

segue que

$$f(I) = \left[\frac{\lambda - 1}{I_{\min}^{-\lambda + 1} - I_{\max}^{-\lambda + 1}}\right]I^{-\lambda}$$
⁽²⁾

(para $\lambda \neq 1$; Pueyo 2007). A média teórica de uma distribuição se define como:

$$\overline{I} = \int_{I_{\min}}^{I_{\max}} If(I) dI$$
(3)

No caso da lei de potência, a partir das Eqs. 2 e 3:

$$\overline{I} = \left(\frac{\lambda - 1}{2 - \lambda}\right) \left(\frac{I^{2 - \lambda} - I^{2 - \lambda}_{\min}}{I^{-\lambda + 1}_{\min} - I^{-\lambda + 1}_{\max}}\right)$$
(4).

Santos (2000) seguiu por outra via e chegou a um resultado diferente. No lugar de usar a densidade de probabilidade f(I) ele usou um número esperado de ocorrências N(I) para cada I: $N(I) = AI^{-\lambda}$ (5),

onde A é uma constante.

Este formalismo não representaria nenhum problema se fosse usado corretamente. Partindo de que N(I) é proporcional a f(I), segue das Eqs. 1, 3 e 5 que:

$$\overline{I} = \frac{\int_{min}^{max} IN(I) dI}{\int_{I_{max}}^{I_{max}} N(I) dI}$$

Entretanto, Santos (2000) usou uma expressão diferente:

$$\overline{I}_{Santos1} = \frac{\int_{I_{\min}}^{I_{\max}} IN(I) dN(I)}{\int_{I_{\min}}^{I_{\max}} N(I) dN(I)}$$
(6).

Este é o primeiro erro: por definição, a média das emissões de gases resulta de integrar sobre os valores de emissão *I*, não sobre os valores de frequência *N*.

O resultado da Eq. 6 é:

$$\overline{I}_{Santos1} = \frac{2\lambda \left(I_{\min}^{-2\lambda+1} - I_{\max}^{-2\lambda+1}\right)}{\left(2\lambda - 1\right) \left(I_{\min}^{-2\lambda} - I_{\max}^{-2\lambda}\right)}$$
(7).

Santos (2000) considerou que $I_{\max}^{-2\lambda+1} \to 0$ e $I_{\max}^{-2\lambda} \to 0$, obtendo

$$\overline{I}_{Santos1} = \frac{2\lambda}{2\lambda - 1} I_{\min}$$
(8)

A eliminação de I_{max} é aceitável na Eq. 7 (presumindo $\lambda > 0,5$ e I_{max}/I_{min} possui valor muito grande), enquanto o termo com I_{max} tem muito peso na verdadeira expressão da média, Eq. 4 (exceto para $\lambda > 2$ e I_{max}/I_{min} "grande"; os valores de λ estimados por Santos (2000) foram menores).

O segundo problema é que, ao fazer os cálculos, Santos (2000) introduziu os valores de λ com o sinal errado. Assim, o autor implicitamente aplicou a equação:

$$\overline{I}_{Santos2} = \frac{2(-\lambda)}{2(-\lambda)-1} I_{\min},$$

ou seja
$$\overline{I}_{Santos2} = \frac{2\lambda}{2\lambda+1} I_{\min}$$
(9)

Nem a Eq. 8 encontrada por Santos (2000), nem a Eq. 9 que ele usou implicitamente, tem semelhança com a verdadeira média teórica na Eq. 4. Então, qual é a relação entre a verdadeira média teórica (Eq. 4) e a média amostral? Se atribuirmos a I_{max} o valor da maior emissão observada, as médias calculadas das duas maneiras devem coincidir, exceto pelo erro amostral inevitável, sem o desvio sistemático. Além do mais, esse erro afeta os dois métodos, uma vez que para aplicar a Eq. 4 deve-se estimar os parâmetros da distribuição. Entretanto, ao aumentar o tamanho da amostra aumenta-se também o maior

valor observado, que, por sua vez, subestima o máximo teórico. Este não seria um problema para calcular a média de outras distribuições estatísticas, mas é um problema para a lei de potência (Pueyo 2007), onde os eventos mais extremos representam uma parte muito importante da emissão total. A consequência é que, na maioria dos casos, a média amostral subestima a média real, ao contrário da conclusão de Santos (2000), ELETROBRÁS (2000) e Santos *et al.* (2008).

Conhecendo as equações corretas, a lei de potência pode ser aplicada aos dados de emissões, mas ainda há outros problemas que devem ser considerados.

Santos (2000) estimou λ com uma regressão simples sobre o histograma com eixos logarítmicos. Este método dá um viés muito grande (Pueyo & Jovani 2006). Alguns procedimentos mais efetivos são: (1) aplicar a regressão sobre os dados agrupados em faixas multiplicativas (Pueyo & Jovani 2006), (2) obter o estimador de máxima verossimilhança (EMV, veja Caixa I), (White *et al.* 2008) ou (3) métodos bayesianos.

Caixa I. Abreviações usadas

EMV: estimativa/estimador de máxima verossimilhança. (maximum liklihood estimator)

LEN: lei exponencial negativa.

LPGT: lei de Pareto generalizada truncada.

LPT: lei de potência truncada.

LPT-S: lei de potência truncada (com os parâmetros estimados por Santos).

A definição dos limites I_{\min} e I_{\max} também não é trivial. Santos (2000) usou o ponto médio da primeira e da última faixa do histograma. Segundo este critério os valores dependem da largura das faixas, que foi uma escolha arbitrária do autor. No caso de I_{\min} , uma pequena modificação produz uma grande mudança na média estimada: note-se que, na Eq. 4, $\overline{I} \rightarrow 0$ quando $I_{\min} \rightarrow 0$ (para $\lambda > 1$). A gama de valores [I_{\min} , I_{\max}] em que a lei de potência é considerada válida deve estar baseada nos dados, não num critério arbitrário.

Por fim, há o problema dos valores que ficam fora da faixa de validade da lei de potência, que foram desconsiderados por Santos (2000). Nesta distribuição, a máxima concentração de dados está no extremo inferior I_{\min} , mas I_{\min} sempre é maior que zero. Provavelmente, existem dados de emissão no intervalo $0 \le I < I_{\min}$. Estes dados também são relevantes para o cálculo da média. Há dois métodos para incorporálos. O primeiro consiste em analisar separadamente a parte não potencial ($0 \le I < I_{\min}$) e a parte potencial ($I_{\min} \le I \le I_{\max}$). O segundo consiste em usar uma única expressão que represente uma boa aproximação para as duas partes. Por exemplo, Ramos *et al.* (2006) usaram a lei de Pareto generalizada:

$$f(I) = \sigma^{-1} \left(1 + \frac{\xi}{\sigma}I\right)^{-\frac{1}{\xi}-1}$$
(10),

Com a reparametrização $\lambda = \frac{1}{\xi} + 1$, $\varphi = \frac{\sigma}{\xi}$, a Eq. 10 se torna:

 $f(I) = (\lambda - 1)\varphi^{-1} (1 + \varphi^{-1}I)^{-\lambda}$ (11). Para valores grandes, a Eq. 11 corresponde a uma lei de potência: $(\lambda - 1)\varphi^{-1} (1 + \varphi^{-1}I)^{-\lambda} \rightarrow [(\lambda - 1)\varphi^{\lambda - 1}]I^{-\lambda} \text{ para } I \rightarrow \infty.$

Para valores pequenos, a lei de Pareto generalizada evita a singularidade que faz com que a lei de potência não possa estender-se a zero: $\lim_{I \to 0} f(I) = \infty$ na Eq. 2, enquanto $f(0) = (\lambda - 1)\varphi^{-1}$ na Eq. 11.

No caso de uma lei de potência com $\lambda \leq 2$, $\overline{I} \to \infty$ quando $I_{\max} \to \infty$ na Eq. 2. Por conseguinte, para estes valores de λ , I_{\max} sempre deve ser finito. A mesma regra é válida para a lei de Pareto generalizada. Para $\lambda \leq 2$ deve-se usar a lei de Pareto generalizada truncada (LPGT):

$$f(I) = \left[\frac{\lambda - 1}{\varphi(1 + \varphi^{-1}I_{\max})^{-\lambda + 1}}\right] (1 + \varphi^{-1}I)^{-\lambda}$$
(12),
A partir das Eqs. 1 e 12, a média da LPGT é:

$$\bar{I} = \frac{\left(\frac{\varphi}{2-\lambda}\right)\left[\left(1+\varphi^{-1}I_{\max}\right)^{-\lambda+2}-1\right] - I_{\max}\left(1+\varphi^{-1}I_{\max}\right)^{-\lambda+1}}{1-\left(1+\varphi^{-1}I_{\max}\right)^{-\lambda+1}}$$
(13)

As Eqs. 2 e 13 permitem calcular a média depois de ajustar as respectivas distribuições. Entretanto, qualquer distribuição é uma simplificação da realidade. A média amostral é mais robusta ao não presumir uma distribuição concreta. Santos (2000) utilizou sua fórmula (Eq. 8) para calcular a emissão considerando apenas valores dentro dos limites observados. Mas, para um cálculo restrito a estes limites, o método mais seguro é a média amostral. No entanto, aplicada corretamente, a lei de potência (e a sua generalização na Eq. 11) é útil para dar um passo a frente e inferir os eventos extremos tão infrequentes que, geralmente, não são observados durante a amostragem (Pueyo 2007).

REFAZENDO OS CÁLCULOS

Para obter uma alternativa às estimativas oficiais atuais, ajustamos diferentes distribuições estatísticas e comparamos as qualidades dos ajustes. A aproximação usada foi frequentista, como a de Santos (2000) e ELETROBRÁS (2000), para não desviar a atenção para o debate frequentista/bayesiano e os detalhes da aproximação bayesiana. Os resultados serviram de base para estimar as emissões médias.

Os parâmetros foram ajustados através da estimativa de máxima verossimilhança (EMV), exceto o ponto de truncagem superior I_{max} , em que a EMV apresenta um viés sistemático (Pueyo 2007). Por não ter acesso aos dados originais, desenvolvemos uma versão da EMV que parte dos dados pré-agrupados em faixas (Apêndice). A EMV foi aplicada assumindo o valor de I_{max} que chamamos de "básico", que é o limite superior da faixa superior. Depois foi calculado o valor "extrapolado" de I_{max} pelo método de Pueyo (2007), correspondendo a eventos tão extremos que não ficam inclusos na amostra.

As distribuições consideradas foram a lei de potência truncada (LPT), a lei de Pareto generalizada e truncada (LPGT) e a lei exponencial negativa (LEN), além da LPT com os parâmetros estimados por Santos (2000) (LPT-S), no lugar dos parâmetros estimados por EMV. A LPGT foi estudada ao ser equivalente à LPT exceto no extremo inferior, onde é mais realista como foi explicado na seção anterior. A LEN foi estudada para comparar com uma distribuição também assimétrica, mas com eventos menos extremos do que numa lei de potência (corresponde ao limite $\xi \rightarrow 0$ da Eq. 10):

$$f(I) = \sigma^{-1} e^{-I/\sigma} \tag{14}$$

(inicialmente foi considerada uma versão truncada da LEN para que fosse mais comparável com a LPT, mas não levou a nenhuma diferença no resultado porque os limites estimados foram $I_{\min}=0$ e $I_{\max} \rightarrow \infty$). As quatro distribuições foram comparadas mediante as razões de verossimilhança.

As emissões médias foram calculadas para a LPT e a LPGT. Como já foi argumentado, a média amostral é, provavelmente, o melhor estimador da média real para o I_{max} básico, ao não assumir nenhuma distribuição concreta. Esta não pode ser calculada diretamente sem acesso os dados originais, mas pode ser aproximada com a equação:

$$\bar{I} = \sum_{j} n_j I_j \tag{15},$$

onde I_j é um valor de emissão representativo da faixa $j \in n_j$ é o número de dados nesta faixa. A opção mais imediata é atribuir a I_j o valor central da faixa (método não-paramétrico), mas representa uma sobreestimativa porque, na lei de potência e distribuições similares, a média dos valores dentro de cada faixa é inferior ao valor central. Para compensar este viés, a Eq. 15 foi aplicada atribuindo a cada I_j a média da faixa segundo a LPGT (método semi-paramétrico). A média amostral assim reconstruída foi complementada com uma estimativa dos eventos extremos não detectados (usando de novo os parâmetros da LPGT).O Apêndice dá maior detalhe dos métodos.

Os resultados do ajuste das distribuições estão representados nas Figuras. 1-2, que comparam as frequências empíricas com as esperadas segundo cada hipótese, numa escala log-log.

Figura 1. Distribuição estatística das emissões de metano por ebulição. As abscissas (*I*) são os valores centrais das faixas de emissão em que estão agrupados os dados, em mg $m^{-2} d^{-1}$. As ordenadas (*n*) são o número de dados em cada faixa. Os dois eixos estão em escala logarítmica. Os círculos vazios indicam a frequência teórica segundo cada modelo de distribuição. Os círculos cheios indicam a frequência empírica. Os triângulos cheios sobre o eixo das abscissas identificam as faixas sem nenhum dado. O grau de ajuste é mais difícil de apreciar para as faixas correspondentes a emissões maiores, onde as frequências empíricas são tipicamente 0 ou 1, enquanto as frequências teóricas dos modelos com bom ajuste são valores intermédios entre 0 e 1.

Figure 1. Statistical distribution of methane emissions from bubbling. The abscissas (*I*) are the midpoints of the intervals into which the data are grouped (in mg m⁻² d⁻¹). The ordinates (*n*) are the number of observations in each interval. Both axes have logarithmic scales. The open circles indicate the theoretical frequency of each distribution model. The solid circles indicate the empirical frequency. The solid triangles on the abscissa axes identify the intervals with zero observations. The goodness of fit is more difficult to appreciate for the intervals corresponding to the larger emissions, where the empirical frequencies are typically 0 or 1, while the theoretical frequencies of the models with a good fit are values that are intermediate between 0 and 1.

Figura 2. Distribuição estatística das emissões de metano por difusão. Ver a legenda da Figura 1 para detalhes.

Figure 2. Statistical distribution of methane emissions by diffusion. See the caption of Figure 1 for details.

No caso da ebulição, o expoente estimado por EMV foi $\lambda = 1,21$ para a LPT e a LPGT, enquanto Santos (2000) estimou $\lambda=0,99$. Santos assumiu $I_{min}=12,5$ mg m⁻² d⁻¹ enquanto o valor estimado por EMV na LPT é $I_{min}=0,53$ mg m⁻² d⁻¹. O valor estimado para φ (equiparável a I_{min}) na LPGT é $\varphi = 0,54$ mg m⁻² d⁻¹. O limite superior extrapolado é $I_{max}=596$ mg m⁻² d⁻¹ para a LPT e a LPGT.

Para a difusão, o expoente estimado por EMV foi $\lambda = 2,08$ para a LPT e $\lambda = 2,65$ para a LPGT, enquanto Santos (2000) estimou $\lambda = 2,00$. Santos assumiu $I_{\min} = 12,5 \text{ mg m}^{-2} \text{ d}^{-1}$, enquanto o valor estimado por EMV na LPT é $I_{\min} = 7,99 \text{ mg m}^{-2} \text{ d}^{-1}$. O valor estimado para φ na LPGT é $\varphi = 21,82 \text{ mg m}^{-2} \text{ d}^{-1}$. O limite superior extrapolado é $I_{\max} = 714 \text{ mg m}^{-2} \text{ d}^{-1}$ para a LPT e $I_{\max} = 929 \text{ mg m}^{-2} \text{ d}^{-1}$ para a LPGT.

As Tabelas I e II mostram as razões de verossimilhança entre as diferentes distribuições. A LPT e a LPGT têm uma verossimilhança quase igual, muitas ordens de magnitude acima da verossimilhança da LPT-S e da LEN.

rable i. Elkelinood ratios between the hypotheses considered (bubbling).					
	LPT-S	LPT	LPGT	LEN	
LPT-S	1,00	$4,15 \times 10^{31}$	$4,09 \times 10^{31}$	$7,66 \times 10^{9}$	
LPT	$2,41 \times 10^{-32}$	1,00	0,99	$1,85 \times 10^{-22}$	
LPGT	$2,44 \times 10^{-32}$	1,01	1,00	$1,87 \times 10^{-22}$	
LEN	1.31×10^{-10}	5.42×10^{21}	5.34×10^{21}	1,00	

Tabela I. Razões de verossimilhança entre as hipóteses consideradas (ebulição)^a. Table I. Likelihood ratios between the hypotheses considered (bubbling)^a.

^aValores maiores que 1 significam que a hipótese da coluna explica os dados melhor do que a hipótese da linha, e viceversa. Detalhes no Apêndice.

^aValues greater than 1 mean that the hypothesis in the column explains the data better than the hypothesis in the row, and vice-versa. Details in the Appendix.

Table II. Razões de verossimilhança entre as hipóteses consideradas (difusão)^a. Table II. Likelihood ratios between the hypotheses considered (diffusion)^a

Table II. Enkelinood fattos between the hypotheses considered (arrasion).				
	LPT-S	LPT	LPGT	LEN
LPT-S	1,00	$2,19 \times 10^{11}$	$2,23 \times 10^{11}$	$1,43 \times 10^{-5}$
LPT	$4,57 \times 10^{-12}$	1,00	1,02	$6,53 \times 10^{-17}$
LPGT	$4,49 \times 10^{-12}$	0,98	1,00	$6,41 \times 10^{-17}$
LEN	$7,00 \times 10^4$	$1,53 \times 10^{16}$	$1,56 \times 10^{16}$	1,00

^aValores maiores que 1 significam que a hipótese da coluna explica os dados melhor do que a hipótese da linha, e viceversa. Detalhes no Apêndice.

^aValues greater than 1 mean that the hypothesis in the column explains the data better than the hypothesis in the row, and vice-versa. Details in the Appendix.

Aplicando a Eq. 9, Santos (2000) obteve emissões médias de 8,36 mg m⁻² d⁻¹ (ebulição) e 9,93 mg m⁻² d⁻¹ (difusão). Aplicando a equação correta (Eq. 4) com os parâmetros que eles estimaram, as médias sobem para 143 mg m⁻² d⁻¹ (ebulição) e 51,55 mg m⁻² d⁻¹ (difusão). Entretanto, aplicando a mesma equação com os parâmetros da LPT estimados por EMV (com o I_{max} básico), os resultados são 44,49 mg m⁻² d⁻¹ (ebulição) e 31,20 mg m⁻² d⁻¹ (difusão). No caso da LPGT, os resultados são 44,33 mg m⁻² d⁻¹ (ebulição) e 27,26 mg m⁻² d⁻¹ (difusão). Usando o I_{max} extrapolado, a LPT dá 47,22 mg m⁻² d⁻¹ para a ebulição e 32,71 mg m⁻² d⁻¹ para a difusão. Aplicando a LPGT dá 47,05 mg m⁻² d⁻¹ para a ebulição e 29,03 mg m⁻² d⁻¹ para a difusão. Aplicando o método não-paramétrico, os resultados são 54,57 mg m⁻² d⁻¹ para a ebulição e 31,63 mg m⁻² d⁻¹ para a difusão. O método semi-paramétrico, provavelmente o mais realista, dá 48,67 mg m⁻² d⁻¹ cara de a difusão.

Aplicando o método não-paramétrico, os resultados são 54,57 mg m⁻² d⁻¹ para a ebulição e 31,63 mg m⁻² d⁻¹ para a difusão. O método semi-paramétrico, provavelmente o mais realista, dá 48,67 mg m⁻² d⁻¹ (ebulição) e 28,21 mg m⁻² d⁻¹ (difusão), ou 76,88 mg m⁻² d⁻¹ no total, ou seja 10,9%, 10,7% e 10,8% mais baixos, respectivamente. Considerando eventos extremos que não foram detectados, as médias sobem moderadamente para 51,37 mg m⁻² d⁻¹ (ebulição) , 29,97 mg m⁻² d⁻¹ (difusão) e 81,34 mg m⁻² d⁻¹ no total, ou seja, aumentos de 5,5%, 5,2% e 5,8%, respectivamente.

Essas análises reforçam a ideia de que as emissões de metano são bem caracterizadas por uma lei de potência. As duas variantes estudadas da lei de potência, a LPT e a LPGT, mostram o mesmo desempenho, mas isso é consequência do uso de dados pré-agrupados em faixas. Acredita-se que a LPGT é mais adequada para dados que não sejam agrupados. Todas as aproximações realistas (LPT com parâmetros estimados por EMV, LPGT com parâmetros estimados por EMV, não-paramétrica e semi-paramétrica) dão valores médios de emissão similares entre eles e claramente superiores aos valores estimados por Santos (2000) e ELETROBRÁS (2000). Enquanto estes trabalhos estimam 8,36 mg m⁻² d⁻¹ para a ebulição e 9,93 mg m⁻² d⁻¹ para a difusão, a nossa melhor estimativa é 51,37 mg m⁻² d⁻¹ para a ebulição e 29,97 mg m⁻² d⁻¹ para a difusão (Fig. 3). Comparado às estimativas oficiais, nossa melhor estimativa é 514% maior para ebulição, 202% maior para difusão, e 345% maior para as duas juntas, ou seja, para a emissões da água que passa pelas turbinas e vertedouros).

Figura 3. Comparação das emissões médias de metano segundo diferentes critérios. O critério "ELETROBRÁS" corresponde a Santos (2000) e ELETROBRÁS (2000) e está baseado em erros matemáticos. A emissão "corrigida" básica é a média amostral dos dados usados nestes mesmos trabalhos (inferida a partir dos dados pré-agrupados em faixas). A emissão "corrigida" extrapolada acrescenta o efeito provável de eventos extremos que não foram incluídos na amostra. A emissão corrigida extrapolada (nossa melhor estimativa) excede o valor "ELETROBRÁS" em 514% para ebulição, em 202% para difusão, e em 345% para a soma das duas.

Figure 3. Comparison of the mean emissions of methane based on different criteria. The criterion "ELETROBRÁS" corresponds to Santos (2000) and ELETROBRÁS (2000) and is based on methodological errors. The "corrected" basic emission is the sample mean of the data used in these same studies (inferred from pre-binned data). The "corrected" extrapolated emission (our best estimate) exceeds the "ELETROBRÁS" value by 514% for bubbling, by 202% for diffusion, and by 345% for the sum of the two.

COMPARAÇÃO DE RESULTADOS

Santos *et al.* (2008) mencionaram que o cálculo que utilizaram resultou em um valor menor que a média aritmética simples das medidas de emissão, mas não mencionaram a magnitude desta diferença. Calculando as emissões das duas maneiras, constata-se que a diferença é enorme (Fig. 3 e Tabela III). Essas diferenças existem tanto para CO_2 quanto para CH_4 . Embora ELETROBRÁS (2000) e Santos *et al.* (2008) fizeram cálculos para ambos os gases, vamos considerar somente o CH_4 , que representa um impacto sobre o aquecimento global, pois, no caso de CO_2 emitido pela água do reservatório, quase a totalidade é oriunda da decomposição de matéria biótica derivada dos produtos de fotossíntese no reservatório ou nos arredores, que retiram da atmosfera a mesma quantidade de CO_2 . Em contraste, o papel do reservatório em transformar CO_2 em CH_4 representa um impacto líquido sobre o aquecimento global (com exceção da pequena parte que representa a ação do carbono que, de outra forma, teria sido emitido em forma de CO_2 , este impacto evitado sendo contado apenas ao longo dos aproximadamente dez anos que cada molécula de CH_4 permanece, em média, na

Tabela III. Comparação dos cálculos de emissões de CH_4 de reservatórios hidrelétricas. Table III. Comparison of calculations of CH_4 emissions from hydroelectric reservoirs.

	Valores p	ara emissões (Ī)	$em mg.m^{-2}.d^{-1}$	Percentager	n de diferenç	a entre resultado	DS
Processo	Média corrigida básica ^a	Média corrigida "extrapolada" com a lei de potência	Santos <i>et al.</i> (2008)	Santos <i>et</i> <i>al.</i> (2008) comparado à média corrigida básica	Média corrigida básica comparada a Santos <i>et</i> <i>al.</i> (2008)	Santos <i>et al.</i> (2008) comparado à média corrigida "extrapolada" com a lei de potência	Média corrigida "extrapolada" com a lei de potência comparada a Santos <i>et al.</i> (2008)
Ebulição	48,7	51,4	8,36	-83	+482	-83	+514
Difusão	28,2	30,0	9,93	-65	+184	-67	+202
Total da superfície	76,9	81,4	18,29	-76	+320	-78	+345

^aMédia corrigida pelo método semi-paramétrico (vide Apêndice). ^aMean corrected with the semi-parametric method (see Appendix).

O valor de Santos et al. (2008) para emissões de CH₄ (somando ebulição e difusão) é 78% mais baixo que a nossa melhor estimativa (a média corrigida com ajuste pela lei de potência: Tabela III), ou, expresso em relação ao valor de Santos et al. (2008), nosso valor é 345% maior. A importância se torna evidente quando aplicado ao conjunto dos reservatórios brasileiros, como foi feito em ELETROBRÁS (2000) usando as equações de Santos (2000). A ELETROBRÁS (2000) fez este cálculo para cada um dos 223 reservatórios no Brasil, totalizando 32.975,48 km², uma área maior que a Bélgica. Quando as emissões de CH₄ assim calculadas são comparadas às emissões calculadas pela nossa melhor estimativa (Tabela IV) a diferença é de 4,4 milhões de toneladas de carbono equivalente ao carbono na forma de CO₂ por ano, quando calculado usando o potencial de aquecimento global (GWP), de 21 para metano que o Protocolo de Kyoto usou para o período 2008-2012. A diferença sobe para 5,2 milhões de toneladas usando o valor de 25 para o GWP, obtida do relatório mais recente do Painel Intergoveramental de Mudanças Climáticas (IPCC) (Forster et al. 2007). A diferença sobe ainda mais, para 7,0 milhões de toneladas quando calculado com um GWP de 34 de um estudo subsequente ao relatório do IPCC, incorporando efeitos indiretos omitidos nos cálculos anteriores (Shindell et al. 2009). Esta diferença está próxima da emissão anual pela queima de combustíveis fósseis na Grande São Paulo. O Município de São Paulo emitiu 4,3 milhões de toneladas de carbono em 2003 com uma população de 10,7 milhões (COPPE 2005). Considerando toda a área metropolitana hoje, a população é aproximadamente o dobro disto, e a emissão presumivelmente em torno de 8 milhões de toneladas de carbono. A emissão das superfícies dos reservatórios das hidrelétricas brasileiras, considerando nossa melhor estimativa (81,4 mg m⁻² d⁻¹) e a estimativa mais recente do GWP de metano (34), já ultrapassa este valor, com 9,08 milhões de toneladas de carbono CO₂-equivalente por ano.

Tabela IV. Impacto da emissão de CH_4 da superfície (ebulição + difusão) dos reservatórios brasileiros, calculada por diferentes métodos considerados neste estudo (média corrigida "básica" e média corrida pela lei de potência), e pelos métodos de Santos *et al.* (2008). Table IV. Impact of CH_4 emission from the surface (bubbling + diffusion) of Brazilian reservoirs by different methods considered in this Study (corrected "basic" mean and the mean corrected with the power law), and by the methods of Santos *et al.* (2008).

	Média corrigida "básica"	Média corrida pela lei de potência	Santos <i>et al.</i> (2008)
Emissão (kg km ⁻² dia ⁻¹)	76,9	81,3	18,29
Emissão anual em 32.975,48 km ² (milhões de toneladas)	0,93	0,98	0,22
Carbono de CO_2 -equivalente ^a , considerando um GWP de CH_4 de 21^b (milhões de toneladas ano ⁻¹)	5,30	5,61	1,26
Carbono de CO_2 -equivalente ^a , considerando um GWP de CH_4 de 25° (milhões de toneladas ano ⁻¹)	6,31	6,68	1,50
Carbono de CO ₂ -equivalente ^a , considerando um GWP de CH ₄ de 34^{d} (milhões de toneladas ano ⁻¹)	8,59	9,08	2,04

^aO carbono de CO₂-equivalente é calculado, primeiro, pela multiplicação da emissão de CH₄ (em toneladas de gás) vezes o GWP (*global warming potential* = potencial de aquecimento global) para obter o equivalente em toneladas de gás de CO₂, e depois é convertido em peso de carbono multiplicando por 12 (peso atômico de carbono) e dividindo por 44 (peso molecular de CO₂). GWP se refere ao efeito sobre aquecimento causado pela emissão de uma tonelada de gás (neste caso CH₄) comparado ao impacto de uma tonelada de CO₂. Assim como no Protocolo de Kyoto, os GWPs usados possuem um horizonte de tempo de 100 anos, sem aplicar uma taxa de desconto para o tempo. ^bSchimel *et al.* (1996). Valor usado para o primeiro período de compromisso (2008-2012) do Protocolo de Kyoto.

^cForster et al. (2007).

^dShindell et al. (2009).

 a CO₂-equivalent carbon is calculated, first, by multiplying the emission of CH₄ (in tons of gas) times the GWP (global warming potential) to obtain the equivalent number of tons of CO₂ gas, and then this is converted to the weight of carbon multiplying by 12 (atomic weight of carbon) and dividing by 44 (molecular weight of CO₂). The GWP refers to the effect on global warming caused by the emission of one ton of gas (in this case CH₄) compared to the impact of one ton of CO₂. As in the Kyoto Protocolo, os GWPs used have time horizons of 100 years with no application of a discount rate for time.

^bSchimel et al. (1996). Value used for the first commitment period (2008-2012) of the Kyoto Protocol.

^cForster et al. (2007).

^dShindell et al. (2009).

As emissões da superfície dos reservatórios constituem apenas uma parte do impacto das hidrelétricas sobre o aquecimento global, sendo que, frequentemente, a emissão de metano oriunda da água que passa pelas turbinas e pelos vertedouros mais que duplica o impacto total (ex.: Fearnside 2002, 2009).

CONCLUSÃO

Os valores oficiais para a emissão de metano da superfície de reservatórios hidrelétricos brasileiros têm subestimado em muito essas emissões. A nossa melhor estimativa é mais de três vezes mais alta. Para os 33.000 km^2 de reservatórios brasileiros, a sub-estimativa das emissões anuais de CH₄ pela superfície da água dos reservatórios nos números oficiais está próxima à emissão da queima de combustível fóssil na região metropolitana de São Paulo. Apenas o impacto das superfícies dos reservatórios no Brasil ultrapassa a emissão da grande São Paulo, e a emissão pela água que passa pelas turbinas e vertedouros (não incluída nos números oficiais) representa um impacto substancial adicional.

APÊNDICE

Este apêndice adiciona alguns detalhes matemáticos dos métodos usados na seção Refazendo os cálculos.

Para estimar os parâmetros, exceto I_{max} e para contrastar as hipóteses, foi usada a função de verossimilhança L. Esta função se define como

 $L=f(\mathbf{I}|\boldsymbol{\theta}; \mathbf{H}_{d})$

(16),

onde, I é o vetor dos dados, θ é o vetor dos parâmetros e H_d é a hipótese do tipo de distribuição. Neste caso os dados originais não estavam acessíveis direitamente, somente sendo apresentados pré-agrupados em K faixas. Por conseguinte, a função de verossimilhança usada foi (17),

 $L=f(\mathbf{n}|\boldsymbol{\theta};\mathbf{H}_{d})$

onde **n** é o vetor $(n_1,...,n_j,...,n_K)$ do número de dados na faixa j. Neste caso, L representa uma distribuição multinomial,

$$L = \frac{N!}{n_1!..n_j!..n_k!} p_1^{n_1}...p_j^{n_j}...p_K^{n_K}$$
(18)

onde *N* é o número total de dados $N = \sum_{i=1}^{K} n_i$, e $p_i(\mathbf{0}; H_d)$ é a probabilidade esperada de um dado pertencer à faixa j.

Esta probabilidade tem a seguinte forma para a lei potencial truncada (LPT) (Eq. 2):

$$p_{1} = \frac{I_{\min}^{-\lambda+1} - c_{1}^{-\lambda+1}}{I_{\min}^{-\lambda+1} - I_{\max}^{-\lambda+1}}$$
(19),
$$p_{j} = \frac{c_{j-1}^{-\lambda+1} - c_{j}^{-\lambda+1}}{I_{\min}^{-\lambda+1} - I_{\max}^{-\lambda+1}}, 1 < j \le K$$
(20),

onde c_j é o limite superior da faixa j e assumimos $I_{max} = c_K$ (segundo o critério do I_{max} básico, descrito embaixo). Para a lei de Pareto generalizada truncada (LPGT):

$$p_{j} = \frac{\left(1 + \varphi^{-1}c_{j-1}\right)^{-\lambda+1} - \left(1 + \varphi^{-1}c_{j}\right)^{-\lambda+1}}{1 - \left(1 + \varphi^{-1}I_{\max}\right)^{-\lambda+1}}$$
(21).

Para a lei exponencial negativa (LEN):

$$p_{j} = e^{-c_{j-1}/\sigma} - e^{-c_{j}/\sigma}, \ 1 \le j \le K$$
(22).

A função L foi usada para duas finalidades. Primeiro, para ajustar as distribuições calculando o estimador de máxima verossimilhança, que é o vetor de parâmetros θ que maximiza L; em todos os casos, os parâmetros foram ajustados numericamente. Segundo, esta função foi usada para comparar as diferentes hipóteses mediante a razão de verossimilhança, que se obtém dividindo a L de uma hipótese pela L de outra hipótese.

O único parâmetro que não foi ajustado pelo método do EMV foi I_{max} . O EMV de I_{max} é o maior valor observado, que é sempre uma sub-estimativa do maior valor possível. No trabalho foram considerados dois valores de Imax. Primeiro, o valor "básico", que foi usado para calcular L. Consiste no limite superior da

$$\hat{I}_{\max} = \left(I_{\min}^{-\lambda+1} - 2^{\frac{1}{N}} \left[I_{\min}^{-\lambda+1} - \max(I)^{-\lambda+1} \right] \right)^{\frac{1}{\lambda-1}}$$
(23),

onde $\max(I)$ é o maior valor da amostra. Para os dados pré-agrupados, o valor atribuído a $\max(I)$ foi o valor central da maior faixa com dados. No caso da LPGT,

$$\hat{I}_{\max} = \varphi \left(1 - 2^{\frac{1}{N}} \left[1 - \left(1 + \varphi^{-1} \max(I) \right)^{-\lambda + 1} \right] \right)^{\frac{1}{\lambda - 1}} - \varphi$$
(24).

A média foi estimada para a LPT e a LPGT aplicando as Eqs. 4 e 13. Também foi estimada mediante um método não-paramétrico e um semi-paramétrico, baseados na Eq. 15. No caso do método não-paramétrico, os valores I_j correspondem ao ponto central de cada faixa, $I_j = (c_{j-1} + c_j)/2$. Para o método semi-paramétrico, I_j corresponde ao valor médio esperado da faixa *j* segundo a LPGT:

$$I_{j} = \frac{\left(\frac{\varphi}{2-\lambda}\right)\left[\left(1+\varphi^{-1}c_{j}\right)^{-\lambda+2}-\left(1+\varphi^{-1}c_{j-1}\right)^{-\lambda+2}\right]-c_{j}\left(1+\varphi^{-1}c_{j}\right)^{-\lambda+1}+c_{j-1}\left(1+\varphi^{-1}c_{j-1}\right)^{-\lambda+1}}{\left(1+\varphi^{-1}c_{j-1}\right)^{-\lambda+1}-\left(1+\varphi^{-1}c_{j}\right)^{-\lambda+1}}$$
(25)

AGRADECIMENTOS: Ao Ministério de Ciência e Tecnologia: Conselho Nacional do Desenvolvimento Científico e Tecnológico-CNPq (Proc.573810/2008-7, 305880/2007-1). Agradecemos P.M.L.A. Graça, S. Couceiro e dois revisores anônimos por seus comentários.

REFERÊNCIAS

- COPPE (Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia). 2005. Inventário de emissões de gases de efeito estufa do município de São Paulo: Síntese. *Relatório Técnico*. Centro Clima/COPPE/UFRJ, Rio de Janeiro, RJ, Brasil. 20p. http://www.prefeitura.sp.gov.br//arquivos/secretarias/meio_ambiente/Sintesedoinventario.pdf>. (Acesso em 05/03/2010).
- DelSONTRO, T.; McGINNIS, D.F.; SOBEK, S.; OSTROVSKY, I. & WEHRLI, B. 2010. extreme methane emissions from a Swiss hydropower reservoir: contribution from bubbling sediments. *Environmental Science and Technology*, 44, 2419–2425
- ELETROBRÁS (Centrais Elétricas Brasileiras S/A). 2000. Emissões de dióxido de carbono e de metano pelos reservatórios hidrelétricos brasileiros: relatório final. *Relatório Técnico*. ELETROBRÁS, DEA, DEEA, Rio de Janeiro, RJ, Brasil. 176p. <http://wwwq2.eletrobras.com/elb/services/eletrobras/ContentManagementPlus/FileDownload.ThrSvc.as p?DocumentID=%7BCAFECBF7-6137-43BC-AAA2-35181AAC0C64%7D&ServiceInstUID=%7B3CF510BA-805E-4235-B078-E9983E86E5E9%7D>. (Acesso em 05/03/2010).
- FEARNSIDE, P.M. 2002. Greenhouse gas emissions from a hydroelectric reservoir (Brazil's Tucuruí Dam) and the energy policy implications. *Water, Air and Soil Pollution*, 133(1-4): 69-96.
- FEARNSIDE, P.M. 2004. Greenhouse gas emissions from hydroelectric dams: controversies provide a springboard for rethinking a supposedly 'clean' energy source. *Climatic Change*, 66: 1-8.
- FEARNSIDE, P.M. 2006. Greenhouse gas emissions from hydroelectric dams: reply to Rosa et al. *Climatic Change*, 75(1-2): 103-109.
- FEARNSIDE, P.M. 2008. Hidrelétricas como "fábricas de metano": O papel dos reservatórios em áreas de floresta tropical na emissão de gases de efeito estufa. *Oecologia Brasiliensis*, 12(1): 100-115.
- FEARNSIDE, P.M. 2009. As hidrelétricas de Belo Monte e Altamira (Babaquara) como fontes de gases de efeito estufa. *Novos Cadernos NAEA*, 12(2): 5-56.
- FORSTER, P. & 50 outros. 2007. Changes in atmospheric constituents and radiative forcing. Pp. 129-234. In: S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor & H.L. Miller (eds.).

Climate Change 2007: The Physical Science Basis. Contribution of Working Group to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, Reino Unido. 996p.

- KEMENES, A.; FORSBERG, B.R. & MELACK, J.M. 2007. Methane release below a tropical hydroelectric dam. *Geophysical Research Letters*, 34:L12809, doi: 10.1029/2007GL029479.55.
- PUEYO, S. 2007. Self-organised criticality and the response of wildland fires to climate change. *Climatic Change*, 82: 131-161.
- PUEYO, S. & JOVANI, R. 2006. Comment on "A keystone mutualism drives pattern in a power function". *Science*, 313: 1739c.
- RAMOS, F.M.; LIMA I.B.T.; ROSA R.R.; MAZZI, E.A.; CARVALHO, J.C.; RASERA, M.F.F.L.; OMETTO, J.P.H.B.; ASSIREU, A.T. & STECH, J.L. 2006. Extreme event dynamics in methane ebullition fluxes from tropical reservoirs. *Geophysical Research Letters*, 33:L21404.
- RUDD, J.W.M.; HARRIS, R.; KELLY, C.A. & HECKY, R.E. 1993. Are hydroelectric reservoirs significant sources of greenhouse gases? *Ambio*, 22: 246-248.
- SANTOS, M.A. 2000. Inventário de emissões de gases de efeito estufa derivadas de hidrelétricas. *Tese de doutorado*. Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil. 148p. http://www.ppe.ufrj.br/ppe/production/tesis/masantos.pdf>. (Acesso em 05/03/2010).
- SANTOS, M.A.; ROSA, L.P.; MATVIENKO, B.; SANTOS, E.O.; D'ALMEIDA ROCHA, C.H.E.; SIKAR, E.; SILVA, M.B. & JUNIOR, A.M.P.B. 2008. Emissões de gases de efeito estufa por reservatórios de hidrelétricas. *Oecologia Brasiliensis*, 12: 116-129.
- SCHIMEL, D. & 75 outros. 1996. Radiative forcing of climate change. Pp. 65-131. In: J.T Houghton, L.G. Meira Filho, B.A. Callander, N. Harris, A. Kattenberg & K. Maskell. (eds.). Climate Change 1995: The Science of Climate Change. Cambridge University Press, Cambridge, Reino Unido. 572p.
- SHINDELL, D.T.; FALUVEGI, G.; KOCH, D.M.; SCHMIDT, G.A.; UNGER, N. & BAUER, S.E. 2009. Improved attribution of climate forcing to emissions. *Science*, 326: 716-718.
- WHITE, E.P.; ENQUIST, B.J. & GREEN, J.L. 2008. On estimating the exponent of power-law frequency distributions. *Ecology*, 89: 905–912.

