
 1

Testing for criticality in ecosystem dynamics: the case of Amazonian 1 

rainforest and savanna fire 2 

 3 

Salvador Pueyo1,2*, Paulo Maurício Lima de Alencastro Graça2, Reinaldo Imbrozio 4 

Barbosa3, Ricard Cots4, Eva Cardona4 and Philip M. Fearnside2 5 

1- Institut Català de Ciències del Clima (IC3), C/ Dr. Trueta 203, 08005 Barcelona, 6 

Catalonia, Spain. 7 

2- Instituto Nacional de Pesquisas da Amazônia (INPA), Coordenação de Pesquisas em 8 

Ecologia, Av. André Araújo 2936, C.P. 478, 69011-970 Manaus, Amazonas, Brazil.  9 

3- Instituto Nacional de Pesquisas da Amazônia (INPA), Coordenação de Pesquisas em 10 

Ecologia, Núcleo de Pesquisas de Roraima, 69301-150 Boa Vista, Roraima, Brazil. 11 

4- NGO Herencia, C/Cívica 47, Barrio Miraflores, Cobija, Pando, Bolivia. 12 

 13 

E-mail addresses: S.P.: spueyo@ic3.cat; P.M.L.A.G.: pmlag@inpa.gov.br; R.I.B.: 14 

reinaldo@inpa.gov.br; R.C.: ricard.cots@gmail.com; E.C.: eva.cardona@cime.es; P.M.F.: 15 

pmfearn@inpa.gov.br. 16 

 17 

Running title: Criticality in Amazonia 18 

 19 

Keywords: Abrupt shift, fractal, global warming, macroecology, percolation, power law 20 

distribution, self-organized criticality, tropical rainforest, tropical savanna, wildfire. 21 

 22 

Features of the manuscript 23 

Type of article: Letter 24 

# words in the Abstract: 149. # words in the main text body: 4,616.  25 

# references: 50. # figures: 5. # tables: 1. 26 

 27 

Corresponding author: 28 

Salvador Pueyo 29 

Institut Català de Ciències del Clima (IC3), C/ Doctor Trueta 203, 08005 Barcelona, 30 

Catalonia, Spain. Ph.: (34) 935679977. E-mail: spueyo@ic3.cat 31 



 2

Abstract 1 

We test for two critical phenomena in Amazonian ecosystems: self-organized criticality 2 

(SOC) and critical transitions. SOC is often presented in the complex systems literature as a 3 

general explanation for scale invariance in nature. In particular, this mechanism is claimed 4 

to underlie the macroscopic structure and dynamics of terrestrial ecosystems. These would 5 

be inextricably linked to the action of fire, which is conceived as an endogenous ecological 6 

process. We show that Amazonian savanna fires display the scale-invariant features 7 

characteristic of SOC but do not display SOC. The same is true in Amazonian rainforests 8 

subject to moderate drought. These findings prove that there are other causes of scale 9 

invariance in ecosystems. In contrast, we do find evidence of a critical transition to a 10 

megafire regime under extreme drought in rainforests; this phenomenon is likely to 11 

determine the time scale of a possible loss of Amazonian rainforest caused by climate 12 

change. 13 

 14 

Keywords 15 
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INTRODUCTION 1 

Ecosystems display regularities, without which there would be little room for ecological 2 

theory. Many of these regularities involve scale invariance (Brown et al. 2002; Halley et al. 3 

2004; Solé & Bascompte 2006). It is no exaggeration to say that we cannot understand the 4 

nature of ecosystems without understanding the ultimate roots of scale invariance, but these 5 

roots are largely unknown. Here we use empirical data to explore this deep theoretical issue 6 

in a specific context: fire in tropical ecosystems. Furthermore, we connect it to another 7 

major theme of ecological theory: abrupt shifts. In addition to their academic interest, our 8 

findings have practical implications because they improve our understanding of the 9 

interaction between ecosystems and climate change. 10 

The concept of “scale invariance” is closely associated with the concepts of “self-11 

similarity” and “fractal”. By “scale invariance” we mean that patterns with some given 12 

features appear again and again over a broad range of spatial or temporal scales. This is 13 

particularly apparent in the physical environment; e.g. in a mountain we can distinguish 14 

smaller mountains, and in each smaller mountain we can distinguish even smaller 15 

mountains. Scale invariance has also been claimed for various kinds of ecosystem features, 16 

either in space, in time or in abstract representation spaces (Brown et al. 2002; Halley et al. 17 

2004; Solé & Bascompte 2006). 18 

In the complex systems literature, scale invariance is often attributed to a mechanism 19 

known as “self-organized criticality”, or SOC (Bak 1996; Jensen 1998, Christensen & 20 

Moloney 2005). This mechanism could be important for understanding many aspects of 21 

ecosystem structure and function (Solé et al. 1999; Levin 2005; Pascual & Guichard 2005). 22 

In ecology, SOC has been suggested for bird population dynamics (Keitt & Stanley 1998), 23 

epidemics (Rhodes & Anderson 1996), forest gap formation (Solé & Manrubia 1995), 24 
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carbon exchanges (Cronise et al. 1996), species abundance distribution (Alonso & Solé 1 

2000), species number (Keitt & Marquet 1996), macroevolution and extinction dynamics 2 

(Plotnik 1993; Solé et al. 1999) and, in relation to the last of these, for food or interaction 3 

webs. Special attention has been paid to the case of fire dynamics (Drossel & Schwabl 4 

1992; Malamud et al. 1998, 2005; Pueyo 2007; Zinck & Grimm 2009). In these models fire 5 

is an ecological process rather than an external disturbance, because it is tightly controlled 6 

by the ecosystem. 7 

Often, models displaying SOC in certain conditions display abrupt shifts known as 8 

“critical transitions” in other conditions. For example, some fire models display abrupt 9 

shifts from small fires to “percolating” fires, which can spread indefinitely (MacKay & Jan 10 

1984; Binney et al. 1992; Pueyo 2007). This paper investigates both SOC and critical 11 

transitions. 12 

 13 

The model 14 

We depart from the model in Pueyo (2007), which is essentially equivalent to the original 15 

“forest fire” model by Drossel & Schwabl (1992), except that it contemplates 16 

environmental forcings. These models are very simple but the resulting fire dynamics often 17 

remain unaltered when adding more details (Zinck & Grimm 2009), a property known in 18 

physics as “universality” (Binney et al. 1992; Solé et al. 1999). 19 

In the model the spatially-extended terrestrial ecosystem is represented as a square 20 

lattice. Certain information is assigned to each cell: whether or not it is currently burning 21 

and the time passed since the last fire. There is also a weather index, which is the same for 22 

all cells but fluctuates in time. Fire events start from cells that are ignited at random. Cells 23 

only burn during one time step. If one of the four closest neighbors of cell (i,j) is burning at 24 
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time t, this cell has a probability pij of burning at time t+1 [if there are more neighbors 1 

burning there are more chances for cell (i,j) to burn]. The probability pij is a function of 2 

weather and time since last fire in (i,j). After burning, cells become refractory to fire 3 

( 0ijp = ). Then the susceptibility to fire increases gradually up to a limit, in a process of 4 

“fuel succession”. The time scale of fire succession is sufficiently long that the duration of 5 

fire events can be ignored. We call p  the mean of pij in all cells (i,j) at a given time. 6 

Simulations start with all cells at the final stage of fuel succession; since, by assumption, 7 

weather is also the same in all cells, they all begin with the same ijp p= .  8 

The model supports two different modes of behavior, corresponding to two physical 9 

phenomena. Initially fires display a “percolation” dynamic (mode 1). If fire scars 10 

accumulate and interfere significantly with the propagation of new fires, the model 11 

develops SOC (mode 2). Such influences of previous fires are named “ecological memory” 12 

by Peterson (2002) and Zinck & Grimm (2009). Table 1 lists three features of the two 13 

modes, which we test with empirical data. The most obvious difference between them is 14 

that ecological memory is essential for mode 2 but irrelevant for mode 1. 15 

Less obvious is the response to changes in p  driven by external factors such as 16 

weather. In mode 1, the mean fire size s  displays a critical transition at a threshold pc. For 17 

cp p≤ , 1 δ
cs a p p −= − , where δ 0.44≈  (Pueyo 2007). Close to the threshold, a tiny 18 

increase in p  is enough to cause a change from a negligible s  to arbitrarily large fires. If 19 

and only if cp p≥  can fires percolate (i.e. propagate from end to end of the lattice) 20 

independently of lattice size (MacKay & Jan 1984; Binney et al. 1992). If the weather 21 

conditions that initially caused p  to exceed pc are maintained or repeated frequently, the 22 
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system switches to mode 2 (SOC) due to the proliferation of fire scars. Thereafter, the 1 

response to further weather changes is smoother, nearly exponential: 2 

αφ ps e≈  (1). 3 

Furthermore, this response is partially dampened by the fuel feedback if these additional 4 

changes are also maintained. 5 

The remaining row in Table 1 refers to scale invariance. Mode 1 displays scale 6 

invariance when p  is fine-tuned to its critical value pc. This is a widespread property of 7 

phase transitions (it is universal in so-called 2nd order phase transitions; Binney et al. 8 

1992). However, it is not generally thought to explain scale invariance in natural complex 9 

systems because of the narrow environmental conditions in which cp p≈  (e.g. Bak 1996). 10 

In contrast, when the system develops SOC (mode 2), scale invariance is observed for a 11 

broad range of environmental conditions, albeit over a limited range of scales (Pueyo 12 

2007). Scale invariance is most apparent in the fire-size distribution, which roughly follows 13 

a power law: 14 

( ) βf s as−= , (2) 15 

where f is probability density (“probability” sensu frequency), and a and β are constants.  16 

The same two modes of behavior are found when modeling phenomena other than fire 17 

with the same basic ingredients: stochastic propagation of some kind of fluctuation, a 18 

refractory period and different time scales for fluctuation and recovery.  19 

Power laws are often interpreted as evidence of SOC. This has been the case for 20 

wildland fire (Malamud et al. 1998, 2005). Other pieces of evidence are the response of fire 21 

to meteorological drivers (Pueyo 2007) and ecological memory, but the latter remains 22 

controversial (Goldammer 1999). Percolation has also been used to model wildland fire 23 
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(MacKay & Jan 1984; Sullivan 2009), but at single-fire level rather than landscape level 1 

like SOC.  2 

Current evidence of SOC in wildland fire is suggestive but not definitive. 3 

Furthermore, similar to other areas of ecology, it is biased toward middle-to-high latitude 4 

ecosystems, in spite of the importance of tropical ecosystems in terms of area, biodiversity 5 

and interactions with climate. 6 

 7 

The case of Amazonia 8 

While tropical rainforest is the dominant vegetation in Amazonia, there are also some 9 

interspersed patches of savanna, the largest covering ~40,000 km2 in the state of Roraima 10 

(Brazil). We used field and remote sensing data to study the three properties in Table 1, in 11 

this patch of savanna and in rainforest areas. 12 

Savanna and rainforest are neighboring biomes with strikingly different fire regimes. 13 

Although there is little fire in Roraima’s savanna during the rainy season, about one third of 14 

it burns in a normal dry season (with most fires taking place between December and March; 15 

Barbosa & Fearnside 2005). In contrast, the biogenic capacity of rainforests to maintain a 16 

humid microclimate is so large that they are virtually immune to fire (Uhl 1998; Cochrane 17 

2003). However, during the extreme droughts caused by the El Niño event of 1997-98, 18 

which is the most intense on record, immense fires did affect rainforests in Roraima 19 

(Barbosa & Fearnside 1999), Borneo (Siegert et al. 2001) and elsewhere (Cochrane 2003). 20 

Roraima’s fires burned 1.1-1.4 million ha of rainforest (Barbosa & Fearnside 1999). With 21 

2.6 million ha burned in East Kalimantan (Borneo) alone, the Indonesian fires of 1997-98 22 

have been described as the largest fire disaster ever observed (Siegert et al. 2001). 23 
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These general observations would suggest that rainforests are an instance of mode 1 1 

behavior (percolation) and savannas are an instance of mode 2 behavior (SOC) in Table 1. 2 

In this paper we study the three properties in Table 1 to test if the dynamics of these two 3 

biomes can be identified with either of these two modes of behavior. We use a combination 4 

of field and remote-sensing data. With major droughts in Amazonia likely to become more 5 

frequent in the future (Cox et al. 2004, 2008), this research has not only theoretical but also 6 

practical interest. 7 

 8 

MATERIALS AND METHODS 9 

Study areas 10 

We used data from two administrative areas: the Brazilian state of Roraima, in northern 11 

Amazonia, and the Bolivian department of Pando, in southwestern Amazonia. The first 12 

comprises large extensions of both rainforest and savanna; we studied both. The second is 13 

mainly covered by rainforest. 14 

 15 

Remote-sensing data 16 

We mapped the fire-scar sizes from remote-sensing images of Roraima’s savanna in 2001 17 

(Fig. 1a) and of Pando’s rainforest in 2005 (Fig. 2b, c). The latter year corresponds to a 18 

severe drought in Pando and other parts of southern Amazonia (Cox et al. 2008). We 19 

obtained 9,687 savanna scars and 411 rainforest scars. We also used time series of hot-spot 20 

counts as a proxy for the annual cycles of burning in these areas. Hot spots are satellite-21 

detected high temperature events, generally caused by active fires. Details are given in 22 

Appendix 1. 23 

 24 
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Analysis and simulation of scar-size distributions 1 

The empirical probability density functions of scar sizes in savanna and in rainforest were 2 

plotted with the method used by Pueyo (2007). The range of values over which the 3 

distribution is scale invariant (i.e. in which the power law applies) can be identified because 4 

the data points corresponding to different bins appear aligned in the log-log plot. A Pearson 5 

regression was used to fit the exponent β of the power law (eqn 2) in this range. 6 

In the case of Roraima’s savanna this range is small, while the whole distribution 7 

resembles a truncated log-normal. The log-normal is often seen as a plausible distribution 8 

and is used as a null hypothesis in ecology and other disciplines because of its relation to 9 

the central limit theorem. We tested to determine if the truncated log-normal can explain a 10 

sequence of data points being so well aligned, using the method by Pueyo & Jovani (2006). 11 

A truncated log-normal is more difficult to reject than a standard log-normal, so by using 12 

the truncated distribution we make our test more conservative. 13 

Conversely, we investigated if a power-law fire-size distribution with an abrupt cutoff 14 

(as is usually found in simulated and empirical fire sizes in other biomes; Malamud et al. 15 

1998, 2005; Pueyo 2007) could give the log-normal-like scar size distribution observed in 16 

Roraima’s savanna. There is no one-to-one correspondence between fires and scars, largely 17 

because some scars result from more than one fire. It is not difficult to find examples 18 

visually in the image, which is not surprising considering the large number of scars (9,687) 19 

and the large fraction of the area that was burned (13.6%). We explored the relation 20 

between fires and scars with a simple simulation. We generated N pseudorandom fire sizes 21 

sequentially, following a power law with an abrupt cutoff, and allowed them to join 22 

previously existing scars. Details are given in Appendix 1. 23 
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 1 

Microscopic dynamics in savanna 2 

We performed field studies in Roraima’s savanna that allowed us to quantify the strength of 3 

the local fuel-fire feedback. This feedback is an essential ingredient of SOC.  4 

One of us (R.I.B.) traveled a 540.1-km triangular road transect representative of 5 

Roraima’s savanna on 24 occasions over a period of three years (Barbosa & Fearnside 6 

2005). At intervals of 100 m he registered whether there was evidence of recent fire on 7 

each side of the road. The observations spanned a year with much fire (1997-98), a year 8 

with little fire (1998-99) and a “normal” year (1999-2000). These data allowed us to 9 

estimate the probability of fire depending on whether a given site had or had not burned in 10 

the previous year.  11 

In fact this conditional probability is not a direct expression of causality. There could 12 

be a heterogeneous probability of fire due to long-lasting features of the landscape such as 13 

geomorphology or proximity to ignition sources; this would cause a positive correlation 14 

between fire occurrence in different years. Observed conditional probabilities should be 15 

weighted against this background to investigate the causal role of previous fires. The 16 

presence of the road was useful to separate these two components. Landscape features are 17 

generally similar on both sides of the road. However, fire history is different because the 18 

road acts as a firebreak (Appendix 1). Therefore, the probability of fire at a given site 19 

conditional to fire occurrence in the previous year at the same site should be compared with 20 

the probability of fire at a given site conditioned to fire occurrence in the previous year on 21 

the opposite side of the road. The proper measure of error to assess the significance of the 22 

difference between these probabilities is not trivial because the same fire event can affect 23 
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different sites, which causes large correlations over a broad range of spatial scales. 1 

Therefore, a nonparametric method was used. Details are given in Appendix 1. 2 

 3 

Observations of the 1997-98 El Niño fires in Roraima’s rainforest 4 

The monitoring included overflights of active fires, ground transects, communication with 5 

multiple stakeholders and analysis of remote-sensing images (Barbosa & Fearnside 1999). 6 

This monitoring was not intended for the present study but rendered some qualitative 7 

observations that are highly relevant for our conclusions. 8 

 9 

RESULTS 10 

Scale invariance 11 

With reference to the first row of Table 1, we conclude that both Roraima’s savanna and 12 

Pando’s rainforest display scale invariance in certain ranges of scales. In both cases the 13 

fire-scar size distributions follow power laws, which are apparent in the form of straight 14 

lines in Figs. 1b and 2c.  15 

The power law is not so obvious in Roraima’s savanna on first inspection. As 16 

apparent from Fig. 3a, the scar-size distribution is similar to a truncated log-normal in this 17 

case. However, the middle range (~1/3 to ~40 ha) is well fitted by a power law (exponent 18 

β 1.25= , 9997.02 =r ). The data points in this range are much better aligned than a 19 

truncated log-normal could explain (Fig. 3b), which allowed us to reject this distribution in 20 

favor of the power law ( 510−<P ). Furthermore, with a simple simulation (Fig. 1c) we 21 

found that the gradual decay of probabilities for scar sizes larger than 40 ha (i.e. 7% of the 22 

scars, generating the log-normal-like shape) is compatible with a fire-size distribution 23 
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consisting of a power law with an abrupt cutoff, considering that some scars result from the 1 

fusion of more than one fire. 2 

The scar-size distribution of Pando’s rainforest can be fitted with a power law 3 

(exponent β 1.60= , 993.02 =r ) except in the lower range (Fig. 2c). However, the amount 4 

of data is much smaller than for Roraima’s savanna. 5 

 6 

Abrupt shifts 7 

With reference to the second row in Table 1, neither Roraima’s savanna nor Pando’s 8 

rainforest give evidence of abrupt shifts, but Roraima’s rainforest does. 9 

Both for Roraima’s savanna and for Pando’s rainforest, the number of hot spots 10 

increases in a roughly exponential way during the dry season (Fig. 4). Due to the 11 

logarithmic scale of the ordinates, an exact exponential increase would appear as a straight 12 

line in Fig. 4. No abrupt shift in the number of hot spots can be seen in any part of the 13 

average cycle. Nor did we find evidence of abrupt shifts for the single-year counts, but the 14 

number of hot spots in a single year is usually too small to give any clear results. 15 

However, the qualitative observations in Roraima’s rainforest during the 1997-98 El 16 

Niño are consistent with the hypothesis of percolation. Widespread fires occurred in 17 

savannas and deforested areas neighboring rainforest beginning in August 1997, but only in 18 

early February 1998, after five months with almost no rain, did the fires penetrate into the 19 

forest. The rainforest began to burn from several foci, but the fire lines progressively 20 

coalesced. These lines persisted until the rains began at the end of March. Streams did not 21 

act as firebreaks because they had dried up and had become flammable before the forests 22 
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themselves. As a result, a continuous or nearly continuous area of 1.1-1.4 million ha of 1 

rainforest was burned. 2 

 3 

Ecological memory 4 

With reference to the third row in Table 1, Roraima’s savanna displays no memory from 5 

year to year (about memory in rainforests see Discussion). 6 

The field study shows that the sites that burn in a given year have higher probabilities 7 

of burning again in the following year (Fig. 5). However, we can discard a memory effect 8 

because, when a site burns, the site on the opposite side of the road also has a higher 9 

probability of burning in the following year, and there is no significant difference between 10 

the two probabilities.  11 

 12 

DISCUSSION 13 

Critical phenomena in tropical fire ecology 14 

Our results indicate that neither of the two modes of behavior in Table 1 gives a correct 15 

description of savanna fire dynamics and suggest that mode 1 gives a correct but partial 16 

description of rainforest fire dynamics. The importance of these findings lies in that, 17 

although we based our description of these modes of behavior on a particular model, they 18 

correspond to two fundamental physical concepts broadly used in complex systems theory, 19 

i.e. percolation and SOC. 20 

Both Roraima’s savanna (Fig. 1b) and Pando’s rainforest (Fig. 2c) display a scale-21 

invariant fire size distribution. This finding generalizes previous results (Malamud et al. 22 

1998, 2005; Pueyo 2007) by extending them to two biomes that encompass a large fraction 23 

of Earth’s biodiversity, biomass and fire. The power law is limited to a certain range of 24 
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scales, as is always found in empirical and simulated data (Malamud et al. 1998, 2005; 1 

Pueyo 2007). This is mathematically unavoidable in a finite world (it is easy to prove that, 2 

for 1 β 2≤ ≤  as usual, we cannot have a proper distribution and a finite mean unless there is 3 

a lower bound larger than zero and a finite upper bound). Furthermore, we would not 4 

expect any scale-invariant feature to be extrapolatable to the scale of individual plants or 5 

below. However, the empirical lower bounds in our study are primarily related to the 6 

resolution of our maps. In the case of Roraima’s savanna, this bound corresponds to scars 7 

covering 1-3 pixels. 8 

We expected tropical savanna to display SOC. This is often diagnosed from the sole 9 

observation of a scale-invariant power-law distribution (Table 1, 1st row) and our data agree 10 

with this expectation. However, this hypothesis is refuted because we found no memory 11 

(Table 1, 3rd row): our field studies indicate that there is a negligible causal connection 12 

between the previous year’s fire history and current burning (Fig. 5). Since we did find an 13 

effect when the fire had taken place in the same fire season, we conclude that the mosaic of 14 

burned and unburned areas is erased every year as plants grow in the rainy season. SOC 15 

cannot develop if the mosaic is not conserved from year to year. In principle this would 16 

move us to the first column in Table 1 (percolation mode). As the system is reinitialized 17 

each rainy season, we would expect a percolation event causing an abrupt increase in 18 

burning rate at some point in the dry season (Table 1, 2nd row). However, no abrupt shift is 19 

observed in the annual cycle of hot spots. Their number increases in an approximately 20 

exponential way through the dry season (Fig. 4a), as we would expect from SOC (eqn 1) 21 

assuming that the relation between water deficit and local fire susceptibility p is not far 22 

from linear (water deficit can be assumed to increase linearly in the absence of rain; Malhi 23 
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et al. 2009). We would not expect this result from percolation. Neither of the modes in 1 

Table 1 is compatible with our observations in Roraima’s savanna. 2 

In the case of rainforests we did not investigate their ecological memory (Table 1, 3rd 3 

row) directly, but we can exclude SOC because, in general, fire has been introduced 4 

recently and there has been no time for a historical process of self-organization relying on 5 

this memory. Furthermore, field observations indicate that fuel feedbacks are positive in 6 

rainforests (Cochrane et al. 1999), rather than negative as would be needed for SOC. 7 

However, in Pando’s rainforest we found a power-law fire-size distribution and an 8 

approximately exponential increase in hot spots through the dry season, as we did in 9 

Roraima’s savanna. In both cases, the first two criteria in Table 1 would suggest SOC while 10 

the third would suggest percolation. 11 

The sequence of events in Roraima’s rainforest in 1997-98 agrees with the hypothesis 12 

of percolation. During the first 9 months of severe drought the rainforest remained immune 13 

to fire. When it began to burn this occurred more-or-less simultaneously at several points, 14 

and the fire fronts coalesced and did not stop burning until the rains arrived almost two 15 

months later. 16 

 17 

Role of spatial heterogeneity 18 

Our results are better understood considering previous knowledge about the spatial 19 

structure of tropical ecosystems. In rainforest, patches degraded by logging and other 20 

anthropogenic disturbances lose their immunity to fire (Holdsworth & Uhl 1997; Nepstad et 21 

al. 1999). In areas at the frontier of deforestation, fires are frequent but have been predicted 22 

(Uhl & Kauffman 1990) and found (Alencar et al. 2004) to be confined to degraded 23 

patches. Also, a small fraction of rainforest consists of igapó (seasonally-flooded rainforest 24 
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surrounding black-water rivers and streams), which is naturally less resistant to fire than 1 

upland forest (Nelson 2007). In agreement with this previous knowledge, Pando’s 2005 2 

fires affected igapós (Fig. 2c) and disturbed forests (Fig. 2b) exclusively or to a large extent 3 

(the initial level of degradation is not known in some parts of the department). The fire size 4 

distribution was necessarily affected by the size distribution of these susceptible areas. In 5 

the case of savanna we also found some areas to burn systematically more than others (Fig. 6 

5; but this could also be influenced by ignition frequency). 7 

A singularity of the 1997-98 El Niño fires in Roraima’s rainforest was the widespread 8 

burning of intact upland rainforest after a well-defined moment in time. This suggests a 9 

defined percolation threshold in this type of forest, which is compatible with the 10 

observation of fires below the threshold if they take place in localized areas of other, more-11 

susceptible types of forest. This reconciles the results from Roraima and Pando. 12 

Notably, the fact that upland rainforest is more resistant to fire than igapós and some 13 

streams implies a geometry of fire resistance opposite to that in savannas and other biomes, 14 

where streams act primarily as firebreaks (this is e.g. apparent in Fig. 1a). While not 15 

necessarily the single or the most important one, this factor could help to explain why we 16 

find evidence of percolation only in rainforests. 17 

 18 

Origin of scale invariance 19 

SOC models could reproduce relevant aspects of fire dynamics in biomes other than 20 

tropical rainforest and savanna, but our findings show that SOC fire dynamics are not 21 

necessary for scale invariance. SOC turns initially homogeneous model ecosystems into 22 

scale-invariant systems, which translates into a scale-invariant fire-size distribution. 23 

However, this initial homogeneity is unrealistic. As discussed above, the preexisting spatio-24 
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temporal heterogeneity seems to be highly relevant for our results. A possible interpretation 1 

is that the ecosystem imports scale invariance from the environment but this results 2 

ultimately from SOC (for example, SOC in geomorphology, hydrology, meteorology, or 3 

human activity). However, there are fundamental reasons to expect scale invariance without 4 

need of SOC. 5 

In an objective Bayesian framework (Jaynes 1968, Pueyo et al. 2007), a frequency 6 

distribution can be decomposed as follows: 7 

( ) ( ) ( );f s s L sπ= v . 8 

The function L introduces the relevant constraints, expressed as the vector v. The function π 9 

is the prior distribution representing randomness and is the point of departure before 10 

introducing constraints. It follows from Jaynes (1968) that scale parameters or variables, 11 

like object size, have the prior distribution 12 

( ) 1s sπ −∝ . 13 

Therefore, 14 

( ) ( )1 ;f s s L s−∝ v . 15 

Most mathematical models are strictly constrained by a small set of rules. Then the prior 16 

distribution plays no role, and it becomes difficult to find rules leading to power laws, such 17 

as the rules of SOC. Ecological phenomena resulting from the interplay of many 18 

heterogeneous factors have laxer constraints. Based on this fact alone, the frequency 19 

distribution f should bear some similarity to the prior distribution π (Pueyo et al. 2007; see 20 

also Storch et al. 2008), as it does in the fire distributions that we observed. 21 

SOC remains suggestive as a tentative explanation for many phenomena. However, 22 

this or other model-based explanations for scale invariance (Reed & Hughes 2002; Pascual 23 
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& Guichard 2005) are only needed if we assume that the dynamics of fire (or any other 1 

phenomenon) obey a simple set of rules, which is not necessarily true. In no case should the 2 

sole observation of a power law be considered a strong proof of SOC, as is often assumed 3 

in the literature (but see Solow 2005). The precedent set by our results is a reason to revise 4 

many claims of SOC in many fields. 5 

 6 

Implications for climate change 7 

Due to the absence of ecological memory in tropical savannas (at least in the region that we 8 

studied), the response of fire to climatic changes is more likely to resemble the response to 9 

weather in this than in other biomes. Our results suggest that this response is roughly 10 

exponential (eqn 1), as in SOC. In the case of rainforests, the possibility of critical 11 

transitions at certain thresholds is especially relevant. 12 

Our 1997-98 and 2005 case studies concern early instances of two types of climatic 13 

events expected to become frequent in the warmer and drier Amazonia that some models 14 

forecast (Cox et al. 2004, 2008; see also Salazar et al. 2007). Most of the rainforest will be 15 

lost according to these models, but this is not necessarily true considering scientific 16 

uncertainty and existing options for mitigation and adaptation (Fearnside 2008; Cochrane & 17 

Barber 2009; Malhi et al. 2009). However, if the loss is to take place, it will be sped up by 18 

fire, which these models ignore. While the above-mentioned models predict a delay of 19 

decades to centuries between committed and actual forest loss (Jones et al. 2009), critical 20 

transitions of the kind that we suggest in this paper are likely to reduce this delay and cause 21 

a stepwise rather than a continuous loss.  22 

 23 

Concluding remarks 24 



 19

Scale invariance can result from mixing heterogeneous processes. Mechanisms such as 1 

SOC are suggestive but are not needed to explain scale invariance unless we think that the 2 

system obeys simple rules. In the case of rainforest and savanna fires we found scale-3 

invariant power laws without SOC. In themselves, power laws should no longer be 4 

considered evidence of SOC. 5 

In rainforests we found evidence of a different type of critical phenomenon: critical 6 

transitions. If the Amazonian rainforest is to be lost to climate change as some models 7 

suggest, the process is likely to take the form of a series of critical transitions. 8 

 9 
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APPENDIX 1 11 

This appendix provides additional information on the methods used. 12 

 13 

Fire scar mapping 14 

We mapped Roraima’s savanna fire scars from a Landsat ETM+ image (232/58, R3G4B5 15 

color composition, 2001-01-22). The three first components from a principal component 16 

analysis (PCA) of the six optical bands were used as an input to a decision-tree classifier. A 17 

comparable image from a different date (2001-11-22) was used as a reference to discard 18 

permanent features that could be mistaken for scars. The results were edited based on 19 

expert knowledge of the area. The estimated kappa accuracy is 0.82. See an example in Fig. 20 

1a. 21 

We mapped Pando’s rainforest fire scars visually from a series of CBERS-2 images 22 

obtained at the end of the 2005 fire season. We first sought the scars with the help of active 23 

fire information from the MODIS sensor (onboard Terra and Aqua). Then the scars were 24 
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mapped from the CBERS images, using a classification system by visual interpretation 1 

from a false-color composition R3G4B2. See details in Cots & Cardona (2006) and Cots et 2 

al. (2007). We used only the data from the fires that had some visible effect on tree 3 

canopies, either directly or indirectly. See the examples in Fig. 2. 4 

 5 

Annual cycles 6 

We estimated the mean annual fire cycle in Roraima’s savanna and Pando’s rainforest area 7 

using hot-spot counts from NOAA-12 AVHR, handed over by INPE/CPTEC 8 

(BDQueimadas). We used the night-time passes (9 p.m. GMT). These time series cover the 9 

period from 1998-99 to 2006-07. They are useful for calculating approximate burning rates 10 

in savannas. In rainforests they are a poor indicator because many fires are hidden by the 11 

canopy. Therefore, fires in deforested and other open areas are comparatively over-12 

represented in rainforest hot-spot counts.  13 

We compared the estimated fire cycles with the rainfall cycles. In Roraima we used 14 

data from the Boa Vista Climatological Station for the same period covered by the hot spot 15 

time series. In Pando we used data from DEKLIM VASClimO (Beck et al. 2005) for the 16 

period available, from 1951 to 2000; they were averaged for the area 10oS to 12oS, 69.00oW 17 

to 66.50oW. 18 

 19 

Simulation of the scar-size distribution 20 

We generated N pseudorandom fire sizes s sequentially, following the distribution 21 

( ) βf s s−∝  if [ ]Mss ,1∈ , and ( ) 0=sf  otherwise. Each fire i had a probability θ θλ i js s  of 22 

joining each previously existing scar j, without excluding multiple junctions. We did not 23 
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use any precise criterion to decide the parameter values because we only wanted to explore 1 

the question of whether fusions among scars had the potential to generate the type of shape 2 

that we had found for the size distribution. We used θ = 0.5 based on simple geometric 3 

assumptions, β = 1.25 and sM = 500 pixels based on the scar distribution, and N = 20,000 to 4 

have a large enough sample size. We then sought a value of λ that gives a distribution 5 

similar to the observed one, and selected λ = 3.10-6. For the graphical display (Fig. 1c), we 6 

multiplied the simulated sizes by the area of a pixel in the image of Roraima. 7 

 8 

Field data analysis 9 

Here we add some technical details of the treatment of the data obtained from the ground 10 

transect in Roraima’s savanna, described in Materials and Methods. 11 

We developed a nonparametric measure of error that is robust despite the correlations 12 

in these data, which are large and extend to a broad range of scales. For one year in each 13 

pair, each site’s datum was moved to a different position, while conserving the relative 14 

order of the data. Since the transect is a closed loop, this is the same as rotating one year’s 15 

data in relation to the other. The conditional probabilities were recalculated for each 16 

possible lag. In this way we obtained a set of surrogate datasets. Our error bars indicate the 17 

standard deviations of the conditional probabilities obtained from these datasets. 18 

In this experiment we assumed that the road acts as a firebreak. This is based on field 19 

observations (Barbosa & Fearnside 2005) and data analysis. The estimated probability for a 20 

given site burning in a given fire season is 003.0346.0 ± . Fire propagation generates 21 

correlations; therefore the estimated probability of finding a burned point beside another 22 

burned point on the same side of the road in the same fire season is 003.0892.0 ± . This 23 
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probability drops to 017.0466.0 ±  across the road (this error term was calculated with the 1 

method above, which cannot be applied in the other two cases; the other two error terms are 2 

standard errors and are thus less meaningful in this context). 3 

 4 
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FIGURE CAPTIONS 1 

 2 

Figure 1 Savanna fire scars in Roraima (Brazilian Amazonia), mapped from a Landsat 3 

ETM+ image. (a) Example of scar identification. (b) Empirical probability density function 4 

f of scar size s. The small frequencies in the lower range, corresponding to 1-3 pixels, could 5 

be due to insufficient resolution. (c) Probability density function obtained from a simple 6 

simulation in which fire sizes follow a truncated power law and some of the scars result 7 

from more than one fire. In both cases, the part that has been fitted with the power law is 8 

limited by vertical lines. 9 

 10 

Figure 2 Rainforest fire scars in Pando (Bolivian Amazonia), mapped from CBERS-2 11 

images. (a) Scars around a road. (b) Scars in an area of igapó (forests seasonally flooded by 12 

black water). (c) Empirical probability density function f of scar size s. This function agrees 13 

with a power law except in the lower range (indicated by the vertical line), possibly because 14 

of insufficient resolution. 15 

 16 

Figure 3 Comparison of Roraima’s savanna fire scars to a truncated log-normal. Solid 17 

symbols: log-normal; empty symbols: empirical data. (a) Probability density function; s 18 

size in ha, f probability density. The empirical data display a power law in the middle 19 

range, from ~1/3 to ~40 ha, which has been delimited by vertical lines. (b) Residuals from a 20 

linear regression in the middle range of the previous plot. 21 

 22 

Figure 4  Annual cycles of the mean number of hot spots. Mean cycles from 1998-99 to 23 

2006-07, NOAA-12 AVHRR, night-time passes, with their standard errors. Since the scale 24 
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is logarithmic, straight lines correspond to exponential variations. (a) Savanna in Roraima, 1 

Brazilian Amazonia (with mean 20th century rainfall). (b) Rainforest in Pando, Bolivian 2 

Amazonia (with mean rainfall 1951-2000).  3 

 4 

Figure 5 Fire probability in a dry season conditioned to fire occurrence in the previous dry 5 

season, along a road transect in Roraima’s savanna (Brazilian Amazonia). There is no 6 

significant difference depending on whether the previous fire took place at the same point 7 

or on the opposite side of the road, even though the road acts as a firebreak. This suggests 8 

that fire is not regulated by the ecosystem through a fuel feedback. 9 
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TABLES 

 

Table 1 Comparison of the features of two different physical phenomena involving 

criticality. They arise as two different modes of behavior of our model but have a more 

general interest. 

Property Mode 1: Percolation Mode 2: SOC 

Scale invariance Only after fine tuning the 

parameters 

Yes, robust 

Response to environmental 

forcings 

Abrupt More gradual 

Memory Irrelevant Yes, needed 

 

 


