The text that follows is a REPRINT. O texto que segue é um REPRINT.

Please cite as: Favor citar como:

Fearnside, P.M. 2016. Environmental and social impacts of hydroelectric dams in Brazilian Amazonia: Implications for the aluminum industry. *World Development* 77: 48-65. (online version published 12 September 2015).

doi: 10.1016/j.worlddev.2015.08.015

ISSN: 0305-750X

Copyright: Elsevier

The original publication is available at: O trabalho original está disponível em:

http://dx.doi.org/10.1016/j.worlddev.2015.08.015

http://www.elsevier.com/

Environmental and Social Impacts of Hydroelectric Dams in Brazilian Amazonia: Implications for the Aluminum Industry

Philip M. Fearnside^{a*}

1 2 ^aNational Institute for Research in Amazonia (INPA), Av. André Araújo, 2936, CEP 69067-375, Manaus, Amazonas, Brazil

**Corresponding author:* National Institute for Research in Amazonia (INPA), Av. André Araújo, 2936, CEP 69067-375, Manaus, Amazonas, Brazil *Email:* pmfearn@inpa.gov.br

Tel: +55-92-3643-1822 Fax: +55-92-3642-3028

3 ABSTRACT

5	Aluminum smelting consumes large amounts of electricity and helps drive dam-building					
6	worldwide. Brazil plans to build dozens of hydroelectric dams in its Amazon region and					
7	in neighboring countries. Benefits are much less than is portrayed, partly because					
8	electricity is exported in electro-intensive products such as aluminum, creating little					
9	employment in Brazil. Dams perversely affect politics and social policies. Aluminum					
10	export offers an example of how a rethinking of energy use needs to be the starting					
11	point for revising energy policy. Dam impacts have been systematically underestimated,					
12	including population displacement and loss of livelihood (especially fisheries),					
13	biodiversity loss and greenhouse-gas emissions.					
14						
15	Keywords:					
16	Aluminum industry; Amazonia; Energy policy; Global warming; Hydroelectric dams;					
17	Brazil					
18						

19 Environmental and Social Impacts of Hydroelectric Dams in Brazilian Amazonia:

20 Implications for the Aluminum Industry

21

22

23

Introduction

Dams have been built on most of the major rivers in industrialized countries, and 24 25 the combination of decreasing availability of sites with hydroelectric potential in North America and Europe and decreasing tolerance of the public in these areas to accept 26 major impacts has led to a shift of dam building to developing countries (Khagram, 27 28 2004). As of 2014 there were 37,641 dams in the world with \geq 15 m height; of the 36.259 of these that had data on use, 8689 were either wholly or partially for 29 hydropower (ICOLD, 2014). In addition to a surge in dam-building activity in China 30 and in the Himalayan region, construction is increasing and future plans are massive in 31 32 tropical areas in Latin America, Africa and Southeast Asia (e.g., Richter et al., 2010; Tollefson, 2011). Aluminum smelting, an activity that consumes large amounts of 33 electricity, has also progressively moved to these locations, including Brazil (do Rio, 34 35 1996). The environmental and social consequences are great wherever large dams are built. Iconic examples include the Narmada Dams in India (Morse et al., 1992; Fisher, 36 37 1995), the Three Gorges Dam in China (Dai Qing, 1994; Fearnside, 1988, 1994) and the 38 planned Mekong River Dams in Southeast Asia (Baran et al., 2012; Grumbine & Xu, 2011). Ignoring or underreporting of large impacts in decision making is by no means 39 restricted to developing countries, as shown by the history of dam building in the United 40 States (Morgan, 1971). Dams have benefits as well as impacts, but it is the large impacts 41 that make consideration of how electricity is used such a vital (and often neglected) 42 aspect of planning and decision making in tropical countries. 43

Decisions on dam building are not only influenced by the balance (or lack 44 thereof) in reports such as environmental impact studies (EIAs), but also by political 45 processes, including the action of non-governmental organizations ranging from 46 grassroots associations of affected people to international environmental and human-47 rights organizations. Khagram (2004) reviews the roles of these actors in dam decisions 48 in various developing countries, showing the differences between countries with high 49 degrees of both democracy and social mobilization (India and Brazil), with democracy 50 51 but low mobilization (South Africa and Lesotho), little democracy but high mobilization (Indonesia), and low levels of both democracy and mobilization (China). The power of 52 the massive financial and political interests surrounding dams, including transnational 53 54 interests, is evident even where civil society is free and active.

Brazil has embarked on an unprecedented drive to build hydroelectric dams in 55 the Amazon region (Figure 1). Brazil had 15 "large" dams (defined in Brazil as > 3056 MW installed capacity) in the country's Legal Amazon region with reservoirs filled by 57 May 2015 (Table 1). An additional 37 "large" dams planned or under construction are 58 listed in Table 2, including 13 as-yet unfilled dams that were included in Brazil's 2012-59 60 2021 Energy Expansion Plan (Brazil, MME, 2012, pp. 77-78). Brazil's economic 61 retraction since that plan has resulted in lengthening time horizons for several of these projects, but the 2014-2023 plan still includes 18 Amazonian dams in its 10-year 62 schedule (Brazil, MME, 2014, pp. 80-81). The 51 existing, under-construction and 63 planned dams listed by number in Tables 1 and 2 are mapped in Figure 1. Many others 64 have been inventoried (e.g., Brazil, ANA, nd [C. 2006], pp. 51-56), including 62 65

additional dams listed in Brazil's 2010 Plan (Brazil, ELETROBRÁS, 1987; see:
Fearnside, 1995). In addition, Brazil plans to build six dams in Peru and one in Bolivia
over this period, mainly for exporting electricity to Brazil (Finer & Jenkins, 2012;
Wiziack, 2012).

70

71 72 [Tables_1_&_2_&_Fig_1_here]

The main argument used to promote hydropower as Brazil's preferred option for 73 74 electricity production is that dams are (supposedly) the least-expensive option in terms of monetary investment per kWh of generation. However, this argument is open to 75 question because dams almost always cost much more and take longer to build than 76 77 originally assumed, making them considerably less attractive in financial terms than 78 thought when the decision is made. This is a worldwide phenomenon, as shown by a recent global review of hundreds of unprofitable hydroelectric projects (Ansar et al., 79 2014). Most recently in Brazil, the Belo Monte Dam's cost is already double the 80 81 government's initial estimate (e.g., Veja, 2013). In addition to the high cost of dams in terms of cash outlays, the non-monetary social and environmental costs of this option 82 are tremendous and have little weight in critical decisions on energy options. Many of 83 84 Brazil's planned dams are in Amazonia because the best sites in other regions of the country have already been dammed. 85

The present paper examines environmental and social costs and benefits of 86 primary aluminum and reviews impacts of Amazonian dams. The paper is limited to 87 addressing the relation between aluminum and Amazonian dams and their impacts; a 88 reform of energy policy requires addressing many other issues needed to reduce energy 89 consumption and to provide alternative sources of electricity. However, Brazil's energy 90 policy can be broken down and addressed in more-manageable parts. A good place to 91 begin is the question of aluminum export. Change is best achieved by focusing attention 92 93 on one or a few factors (in this case aluminum) and identifying critical points that impede social and environmental objectives from being attained. This is an approach in 94 the field of political ecology. 95

96 In a review of the political ecology of large dams, Nüsser (2003) finds that the 97 aluminum industry is "intimately linked to the dambuilding lobby." Questions 98 surrounding Brazil's Amazonian aluminum industry are central to other fields as well. Paul Ciccantell has applied both the social constructionist approach from environmental 99 100 sociology (Ciccantell, 1999a) and new historical materialism (which combines methods of environmental sociology, sociology of development and social impact assessment) to 101 interpret the role of these developments in globalization. He finds that "The 102 103 incorporation of the Amazon via the aluminum industry is a key case of raw materialsbased development in the era of globalization" (Ciccantell, 1999b, p. 177). Highly 104 unequal distribution of impacts and benefits of Amazonian aluminum raises issues of 105 106 environmental justice; concerns of this type have been shown to be important in bringing about change both at individual and societal levels (e.g., Reese & Jacob, 2015). 107

Aluminum and hydroelectric dams fit into the "resource curse" paradigm that is best known for mining but also applies to other forms of development where capitalintensive industries tap valuable natural resources. The seeming paradox of countries with the greatest mineral wealth having the highest incidences of poverty and the lowest indices of social wellbeing is a well-known and robust generalization; the greater the percentage of a country's gross domestic product that is derived from extracting minerals, the greater its poverty (e.g., Pegg, 2003; Sachs & Warner, 1995; Ross, 2001; 115 Rich, 2013; Weber-Fahr, 2002). Several factors contribute to the explanation of this phenomenon (Collier, 2007, pp. 38-52). One is the "Dutch disease," named after events 116 in the 1960s when the advent of revenue from North Sea gas had the ironic result of 117 worsening employment and general welfare in the Netherlands. This was because the 118 natural-resource revenue caused the country's currency to strengthen, thereby rendering 119 unprofitable the manufacturing and other employment-generating industries that had 120 previously sustained the economy. Another factor is price volatility of extractive 121 commodities, leading to effects that undermine governance and democratic institutions 122 during both the boom and the bust phases of the cycles. Another factor leading to 123 degradation of governance and consequent impacts on the poor is the tendency of 124 resource extraction to generate wealth for large companies or wealthy individuals. This 125 126 distribution affects the financing of central governments both through taxation and 127 through more-direct contributions to political leaders through campaign donations 128 and/or corruption. These leaders then become more responsive to the demands of their benefactors than to the interests of the population at large. Exploitation of hydropower 129 130 fits this paradigm, although, in the case of Brazil, electricity exported as aluminum is only a part of a wider shift in the country's economy, with manufacturing being eclipsed 131 by primary commodities like soybeans and iron ore. Dams are built by large companies, 132 produce very little employment after the construction phase (especially if the power is 133 used for aluminum), and the dam-building companies represent major donors to 134 political leaders (as in the case of Brazil: see section on "The role of corruption"). 135

The main purpose of this paper is to examine the environmental and social costs and benefits of primary aluminum production and review the impacts of Amazonian dams. The heavy environmental and social impacts of dams makes exporting electricity in the form of aluminum a poor development choice.

Costs and benefits of aluminum

143 Aluminum and dam building

140 141

142

In the 2011-2020 energy expansion plan the Brazilian government justified 144 145 ambitious plans for Amazonian hydropower on the assumption that the country's gross domestic product (GDP) will grow at 5% per year over the period, as will demand for 146 electricity (Brazil, MME, 2011, pp. 17 & 29). In deference to an undeniable economic 147 slowdown, the 2012-2021 plan revised the annual rate to 4.4% for the 2012-2016 148 149 period, but maintained the 5% rate after that (Brazil, MME, 2012, p. 21). In any case, maintaining these rates would lead to astronomical assumed demand for electricity 150 within a few years as a simple consequence of the mathematics of exponential growth. 151 152 There is ample room to question both the realism of these assumptions (e.g., Costa, 2012) and the wisdom of important components of the assumed future growth, 153 particularly export of energy-intensive commodities such as aluminum. The assumption 154 is that government should race to produce electricity to supply whatever amount of 155 power the market "demands" without questioning whether these uses are beneficial for 156 Brazilian society. This demand is increasingly shaped by exports to global markets 157 (Bermann, 2012a). In the case of primary aluminum, the key input is electricity rather 158 than minerals or labor. In a panel discussion at the 4th International Aluminum Congress 159 in São Paulo in 2010, the president of Alcoa Latin America and Caribbean stated that 160 161 electricity represents 50% of total production costs in Barcarena and São Luis (Figure 2) (Highbeam Business, 2010). In 1989, electricity represented 35% of operating costs for 162 smelting primary aluminum in Brazil, while labor represented 10% (US, DOE, 1997, p. 163

16). Expenditure on electricity and its proportion of the total cost depend heavily on the 164 electricity rate charged, which varies in different locations and historical periods, but is 165 invariably subsidized. Were the rate the same as that charged to residential consumers, 166 for example, electricity would represent a much higher proportion of expenses. Rate 167 contracts with aluminum companies have been tied to the international price of 168 aluminum in much of the world, including Brazil (e.g., Brazil, MME, 1979). This 169 creates a perverse situation where price determines cost, rather than the other way 170 around (Burns, 2013). The result is the pattern of heavy subsidies and artificially low 171 prices of both aluminum and electricity. 172

173 174

175

[Figure_2_here]

176 In 2004 a major price concession expired: the 20-year concession (1984-2004) 177 made to Albrás (an enterprise then composed of 33 Japanese firms plus Companhia Vale do Rio Doce - a Brazilian government mining company, now named "Vale," that 178 179 was privatized in 1997). The concession had set the price of electricity such that the cost of power consumed in smelting would not exceed 20% of the international price of 180 aluminum (Brazil, MME, 1979), or only one-sixth of what residential consumers paid 181 182 and one-third to one-half the cost of generating the power (Fearnside, 1999). Expiration of the concession was an opportunity for Brazil to either rid itself of this drain on its 183 184 energy resources or to charge a price that would recover the full cost plus a reasonable 185 profit. Instead, another 20-year concession was granted at subsidized rates that factory owners were confident would assure continued high profitability (Vale, 2004). 186

Aluminum ingots represent electricity in a form that can be loaded on a ship and 187 taken away. Many other parts of the world would rather import the ingots than produce 188 them at home because generating the large amounts of electricity needed to smelt 189 aluminum has major social and environmental impacts (Müller-Plantenberg, 2006; 190 191 Switkes, 2005). The smelting itself also has multiple impacts, such as a variety of occupational cancers and other diseases (Norseth, 1995). Social impacts can be 192 193 substantial, as in the case of the Albrás smelters in Barcarena, Pará (Coelho et al., 2004; Monteiro & Monteiro, 2007). Essentially, the countries that import aluminum ingots or 194 195 products (including partially transformed products such as rods and sheets) are exporting the environmental and social impact of these products to places like Brazil. 196 The Brazilian government sees the country's combination of bauxite deposits and rivers 197 198 capable of producing hydropower as an opportunity to exploit a competitive advantage in exporting aluminum (Ciccantell, 2005; de Andrade et al., 2001). The question is 199 200 whether this represents a wise choice.

While dams being built by the Brazilian government produce power that is
bought by aluminum smelters (at subsidized rates), "autoproduction," or building and
ownership of dams by aluminum companies themselves, is also increasing (e.g.,
Bermann, 2004). Dams for autoproduction in Brazilian Amazonia are listed in Table 3.
Note that the official figures for affected people given in Table 3 (International Rivers,
206 2012) may be significantly underestimated, especially for the Santa Isabel Dam
207 (Mougeot, 1990, p. 98).

- 208
- 209 210

[Table_3_here]

Except for cases where dams are built and owned by the aluminum companies themselves, the association between particular dams and aluminum smelting is 213 increasingly blurred as electricity in the country has become progressively more integrated since creation of the National Interconnected System (SIN) in 1995; all 214 Brazilian states will be connected to the SIN by the end of 2015. The Tucuruí Dam, 215 which blocked the Tocantins River in 1984, provides an example of a dam built 216 primarily for aluminum (Fearnside, 1999, 2001; Pinto, 1997). In 1989, 49.9% of all 217 electricity consumed in the state of Pará was by the Albrás smelter in Barcarena (Brazil, 218 ELETRONORTE, 1987). In addition to a direct transmission line to Barcarena, Tucuruí 219 also has a direct line to the Alumar smelter in São Luis in the state of Maranhão. Today 220 the new dams connected to the SIN provide power to a national grid, from which 221 smelters in various locations tap electricity. One result of the advent of the SIN is that 222 proponents of hydroelectric dams can always claim that the power is going to the homes 223 224 of the people of Brazil. In 2008 the residential sector accounted for 22.3% of Brazil's electricity use, while heavy industry (including aluminum) accounted for 28.6%, light 225 industry 17.4%, commerce and services 14.6%, government 8.0%, energy 4.3%, 226 agriculture 4.3%, mining 2.6% and transport 0.4% (Bermann, 2012a). The fact remains 227 228 that electricity from the SIN used by aluminum companies is more than the output of even the largest of the many dams planned in the Amazon region. 229

In 2007 total consumption of electricity in Brazil was 412.1 TWh (Brazil, MME, 230 231 2009, p. 26), while use for primary aluminum was 25.13 TWh (ABAL, 2008, p. 48), or 6.1% of the total. In addition to primary aluminum (ingots), a growing form of export is 232 233 as sheets or bars. Of course, the country also uses vast amounts of energy for other 234 purposes. The explosion of Amazonian dams is clearly not driven by aluminum alone, and a broad reform of the country's energy policies is needed. Nevertheless, primary 235 aluminum stands out because of this commodity's high impacts and meager benefits for 236 Brazil. The possibility of large-scale expansion of aluminum exports is real, since global 237 demand for primary aluminum is expected to increase greatly in the coming decades 238 (Bergsdal et al., 2004). Unlike final products with final consumers in Brazil, potential 239 global demand is essentially infinite from the standpoint of any given country, even one 240 as rich in energy resources as Brazil. In other words, there is no natural stopping point 241 where Brazil's rush to build ever more dams would be halted for lack of markets for 242 aluminum and other electro-intensive commodities. Critical decisions, such as what 243 kinds of products the country should export and whether to build scores of dams in 244 245 Amazonia, need to be made in a rational and democratic fashion rather than being 246 surrendered to the invisible hand of the global economy.

247 248

Aluminum and economic returns

Exported aluminum is exempt from Brazil's principal tax -- the Tax on 249 250 Circulation of Goods and Services (ICMS). This is a result of the "Kandir Law" (Complimentary Law No. 67/1996). Since the aluminum smelters located in Amazonia 251 are almost exclusively for export, they pay little tax, whereas those in the rest of the 252 country, which primarily supply transformation industries for domestic consumption, 253 pay much more. The "nominal" tax rates applying to the Amazonian smelters of Albrás 254 and Alumar are estimated at 18% and 13% of gross receipts, respectively, but the 255 256 "effective" tax paid (after discounting tax incentives and other benefits) is only 8% in 257 both cases (Cardoso et al., 2011, p. 70). By contrast, Companhia Brasileira de Alumínio (CBA), located in the states of São Paulo and Minas Gerais, sells 71% of its production 258 259 on the domestic market; its nominal tax rate of 21% is only slightly reduced to 20% as the effective rate (Cardoso et al., 2011, p. 71). 260

Brazil exported 404,848 t of aluminum ingots in 2013, worth US\$789.9 million (ABAL, 2014, pp. 25 & 27). At 8% effective tax, this generated only US\$63.2 million in revenue for the Brazilian government – a miniscule amount compared to the financial cost and damage inflicted by hydroelectric dams that underlie the industry.

Brazil's imports of aluminum have been increasing, including intermediate products such as sheets and rods (Table 4). Part of the supply of ingots and other untransformed forms of aluminum for transformation industries in Brazil's southeastern region comes from imports, mostly from Argentina. These imports account for 12.6% of the primary aluminum that is not exported in raw form (Table 4). Unlike smelters in southeast Brazil, the country's Amazonian smelters are dedicated to export; the main destination for ingots is Japan.

272 273

274

283

[Table_4_here]

Domestic consumption of aluminum has surged in Brazil since 2004, 275 276 approximately doubling by 2013, and the industry expects further increase through 2020 (Massarente et al., 2013, p. 4). Exports continue to be dominated by ingots and other 277 untransformed products: 80.8% of the exported weight is in this form, while another 278 279 12.3% is in semi-manufactured products and only 6.9% is in manufactured products (Table 4). The impact of the hydroelectric dams that sustain these exports is in 280 proportion to their weight, not their value. The value of exports is also mostly in 281 282 untransformed aluminum: 58.9% of the total (Table 4).

284 Aluminum and employment

The president of the Brazilian Association of Aluminum (ABAL) praises 285 aluminum and hydroelectric dams "for the growth of Brazil" (Azevedo, 2011). The 286 implication that smelting primary aluminum is contributing to the alleviation of poverty 287 and unemployment in Brazil is misleading because the cost of producing the few jobs 288 that are created by primary aluminum is sacrificing the opportunity for Brazil to use 289 290 both its financial and the energy resources in other more-beneficial ways. Employment is minimal in primary aluminum production. In 2013, Brazilian smelters used 19,852 291 292 GWh of electricity and supported 28,928 direct jobs (ABAL, 2014, pp. 10 & 34). This 293 represents only 1.46 jobs per GWh of electricity, even less than the 2.7 jobs/GWh calculated by Bermann and Martins (2000, p. 90). 294

295 Construction of the Belo Monte Dam, for example, involves estimated monetary costs totaling over R\$40 billion [approximately US\$20 billion at the time of the 296 estimates]. This cost is the R\$30 billion 2010 estimate of the construction firms for the 297 298 dam itself, plus the R\$5 billion contracted in 2014 for the first transmission line, plus R\$7.7 billion expected for the second transmission line. In the case of Belo Monte, the 299 300 choice is not between this dam and nothing, but rather between investing this amount of 301 money in Belo Monte versus investing the same amount in something else. The cost of the decision to invest in Belo Monte is not only one of lost job-creation opportunities 302 but also the significant environmental and social impacts on the Xingu River, both 303 304 above and below the dam (e.g., Santos & Hernandez, 2009).

The employment numbers presented by the president of ABAL are aggregated in a way that makes aluminum appear to be better than it is. The employment figures given lump the smelting of primary aluminum with employment in "transformation" industries and in "indirect" jobs in the wider economy. ABAL's president claims 350,000 "direct and indirect" jobs (Azevedo, 2011). This is apparently an expansion of 310 what is meant by "indirect" from the estimate for 2009 in ABAL's fourth (2010) sustainability report of 346,000 jobs described as "direct, indirect and recycling" 311 (ABAL, 2011, p. 31). Of these, 130,000 are "direct and indirect" and 216,000 are in 312 recycling (ABAL, 2011, p. 17). Particularly poignant is the inclusion of recycling in 313 these figures. Brazil has some of the highest aluminum recycling rates in the world: for 314 315 aluminum cans, 98.2% recycling is claimed (ABAL, 2011, p. 46). While this is undoubtedly a positive feature, it is less a reflection of green consciousness than of the 316 country's economic inequalities: many poor people survive by retrieving aluminum cans 317 from roadside rubbish and city dumps. These jobs, of course, would still be there even if 318 no primary aluminum were produced in Brazil. 319

ABAL's 2013 Statistical Yearbook indicates 90,509 jobs in transformation 320 321 industries, or three times more than the 28,928 jobs in smelting primary aluminum (ABAL, 2014, p. 10). ABAL (2014, p. 10) claims 382,449 "indirect" jobs. It should be 322 recognized that "indirect" jobs cannot fairly be credited to aluminum, as any other form 323 of investment would also create jobs when the money paid in salaries spreads through 324 325 the surrounding communities to create jobs in commerce, services, etc. Indirect jobs are more-or-less proportional to the number of direct jobs created, which in the case of 326 primary aluminum is extraordinarily low both in terms of jobs per unit of money 327 328 invested in the industry and in terms of jobs per GWh of electricity consumed (Bermann, 2002; Bermann & Martins, 2000; Monteiro & Monteiro, 2007). Only the 329 330 primary aluminum jobs are relevant to the debate surrounding new dams like Belo 331 Monte.

ABAL claims "indirect" benefits from producing aluminum, but does not take 332 responsibility for any impacts other than those within the walls of the aluminum factory 333 itself. ABAL (2010) estimates greenhouse-gas emissions at 6.661 t CO₂-eq/ t of primary 334 aluminum, or 0.15% of Brazil's national emissions. Unfortunately, the impact of the 335 hydroelectric dams built to supply power to these factories is an integral part of the 336 impact of aluminum smelting. Aluminum's high electricity consumption is even 337 portrayed as an indirect benefit to Brazil in ABAL's 2010 sustainability report: "Did 338 you know that... As the aluminum industry consumes high load electrical power during 339 24 hours/day, it provides important compensation for the hydroelectrical power 340 generating system, contributing for the investment ability of the energy industry and its 341 expansion" (ABAL, 2011, p. 37). 342

343 No one would suggest that Brazil should not produce aluminum for its own 344 consumption, but defining what is "consumed" in the country is a slippery and easily manipulated label. Aluminum ingots that are exported are obviously not "consumed," 345 but what about the next step up the chain: aluminum in the form or rods or sheets? This 346 347 first transformation step produces some employment, but much less than the later manufacturing steps that will make consumer products out of these intermediate forms. 348 Has aluminum been "consumed" in Brazil when intermediate products are produced and 349 350 exported? The employment they generate is undoubtedly minimal compared to the financial, social and environmental impact of the hydroelectric dams that produce the 351 main input to these products: the electricity used to smelt primary aluminum. Export 352 353 products at the top of the chain, such as an airplane made of aluminum by EMBRAER, 354 produce much benefit to the country that no one would want to lose. However, products like airplanes represent a miniscule part of the total aluminum exported by Brazil. All of 355 356 the airplanes produced in 2011 (EMBRAER, 2012) multiplied by their respective empty weights represent a maximum of 3409 tons, assuming that they are composed only of 357 aluminum. This represents only 0.2% of Brazil's approximate 2011 primary aluminum 358

production of 1861 million tons (extrapolated from data available for previous years).
Where the line is drawn between "consumption" and "export" has drastic effects on
policy. Some shift in definitions may explain the unusual export numbers presented by
ABAL (Azevedo, 2011).

ABAL indicates that 56% of the aluminum was being "consumed" domestically 363 364 in 2007 (ABAL, 2008, p. 30), meaning that 44% was being exported as primary aluminum. In 2009 domestic consumption was 72% (ABAL, 2011, p. 31). The jump to 365 87% (1.3 out of 1.5 million tons) in 2010 presented by ABAL (Azevedo, 2011) 366 probably represents acceleration of a trend to export more aluminum in forms slightly 367 farther up the transformation chain (as opposed to being consumed by end users in 368 Brazil). However, for aluminum produced in Amazonia this welcome trend appears not 369 370 to apply. ABAL's data indicate the export destinations led by European countries 371 (30.6%) followed by the USA (28.6%), Japan (22.2%) and others (18.6%) (ABAL, 2005, p. 20). The increase in Brazil's aluminum production from 2000 to 2008 372 (Bermann, 2012a) corresponds to a growth rate of 3.9% per year. The 2011-2020 energy 373 374 expansion plan projects an annual production of 2.537 million tons by 2020 (Brazil, MME, 2011), which corresponds to an increase at 3.6% per year from 2008 to 2020. 375 The 2012-2021 plan reduced this projection to 1.1% per year based on ABAL's claim 376 that Brazil's electricity is more expensive than in competing countries (Brazil, MME, 377 2012, pp. 28 & 35). 378

379 As an illustration, Brazil could, if it wanted, import aluminum at any stage in the 380 chain of production from primary aluminum ingots through the finished products. In 2009 Brazil imported 162 thousand tons of aluminum in the form of finished products 381 or components, or 16% of the total "consumed" in the country (ABAL, 2011, p. 31). 382 Imagine, for the sake of argument, that Brazil ceased producing primary aluminum 383 altogether and imported sufficient ingots to supply all three groups: those who make 384 aluminum products whose final consumers are in Brazil, those who make final products 385 for export, and those who export intermediate products such as aluminum rods and 386 rolled sheets. In this case the amount of employment in transformation and in final 387 388 product manufacture would be the same as it is today. The difference lies in the cost of producing the primary aluminum domestically versus the cost of importing it. Since the 389 390 real cost of producing primary aluminum is largely non-monetary, being in the form of social destruction in the places where hydroelectric dams are built, and in environmental 391 impacts such as greenhouse-gas emissions, such a choice might not be so irrational for 392 393 Brazil. The option is always open to produce only enough primary aluminum in Brazil to manufacture end products that are consumed inside the country, plus a few select 394 395 high-benefit exports such as airplanes. The end of exports of raw ingots, of coils of 396 aluminum rods and rolls of aluminum sheets, and of building materials, packaging and other lower-benefit products, would be a small price to pay compared to the destruction 397 wrought by hydroelectric dams. The money saved from investment in dams and in the 398 399 less-noble aluminum products could be invested in other industries with greater employment benefits than those provided by this portion of the aluminum chain and its 400 associated hydroelectric industry. 401

The drawbacks associated with aluminum also apply to other electro-intensive commodities that are produced for export with power from Amazonian dams. Iron alloys produce even less employment than primary aluminum: 1.1 jobs per GWh consumed (Bermann & Martins, 2000, p. 90). Brazil produced 0.984 million tons of iron alloys in 2008 (Bermann, 2012a) and annual production is expected to grow to 2.060 million tons by 2020 (Brazil, MME, 2011), implying a growth rate of 6.4% per 408 year. In 2008 iron alloy production consumed 7143.8 GWh, and primary aluminum 25,247.2 GWh (Bermann, 2012a). By 2020 electricity use for iron alloys would increase 409 to 14,955.4 GWh and for aluminum to 38,562.4 GWh. The total for these two 410 commodities in 2020 (53,518.6 GWh) corresponds to an increase at 4.2% per year since 411 2008. As a general rule across many countries, investment in primary commodities such 412 as these produces significantly less benefit for national indicators of economic 413 wellbeing than do other types of investment (Carmignani & Avom, 2010). The energy 414 embodied in this trade is particularly important in the case of Brazil (Bermann, 2011; 415 Machado et al., 2001). 416

- 417
- 418 419

Aluminum in the context of international markets

420 The international price of aluminum has risen and fallen over the course of 421 recent decades, with logical impacts on the force of this commodity in driving dambuilding decisions. These price cycles can be expected to continue in the future. During 422 423 periods with attractive prices aluminum has been one of the motives (and in many cases the primary motive) for building some of the world's largest dams, which are also some 424 with the largest environmental and social impacts. These include Brazil's Tucuruí Dam, 425 426 Ghana's Akosombo Dam, Canada's James Bay dams, Venezuela's Guri Dam, and various dams in the Patagonian region of Chile (Gitlitz, 1993). The existing and planned 427 Inga dams on the Congo River have had a long history of connection to aluminum, with 428 429 a massive complex of smelters from various countries planned from the 1970s through the early 1980s, and then again in the 2000s prior to the 2008 financial crash (Misser, 430 2013). In addition to price fluctuations, political and military events in the Democratic 431 Republic of Congo have impeded implementation of the plan (Misser, 2013). 432 Nevertheless, the Congo is specifically mentioned by the International Aluminium 433 Institute (IAI) as a likely site for future smelters (Nappi, 2013, p. 27). 434

435 Aluminum prices crashed dramatically from US\$3000/ton to US\$ 1250/ton with the global financial crisis in 2008; prices partially recovered to US\$2750/ton by April 436 2011 and then declined to a plateau at around US\$2000/ton by mid-2013 where they 437 have remained through April 2015 (LME, 2015). Low prices have caused Brazilian 438 smelters to postpone expansion. For example, in 2009 the 475,000-ton/year Votorantim 439 smelter in Sorocaba, São Paulo put a planned 100,000 ton/year expansion on hold while 440 at the same time investing in a new aluminum smelter in Trinidad and Tobago, where 441 442 Chinese financing had been attracted with an offer of cheap electricity for 30 years from the country's abundant natural gas reserves (Ribeiro, 2009). Presumably, at some future 443 date global demand will have risen sufficiently to make investments in smelters in 444 445 Brazil and elsewhere attractive again.

The low prices affecting decisions in Brazil have similar effects throughout the 446 world. In December 2013, a year after a memorandum of understanding had been 447 signed with the Paraguayan government, Rio Tinto Alcan "postponed" a US\$4 billion 448 aluminum smelter in Paraguay that had been scheduled to begin operation in 2016 449 producing 674,000 tons per year (Reuters, 2013). This postponement was motivated by 450 451 the low price of aluminum, combined with a "capacity overhang" of many aluminum smelters around the world due to China's unexpected move to smelt more of its own 452 aluminum rather than importing it (Trefis, 2013). China's primary aluminum smelting 453 454 increased from 2.7 million to 21.9 million tons/year over the 2000-2013 period, and further increased to 27.7 million tons/year in 2014 (IAI, 2015). 455

456 Projected global growth in demand for primary aluminum for 2013-2030 implies the equivalent of 40-50 new 500,000-ton/year smelters, plus additional smelters to 457 replace some of the existing facilities that will be dismantled or idled over this period 458 (Nappi, 2013, p. 26). Shifts in the locations of primary aluminum production are 459 expected to be toward "regions where stranded energy can be available" (Nappi, 2013, 460 p. 27). Among the factors expected to influence these shifts are restriction on CO₂ 461 emissions from energy sources. Despite tropical dams not being "green" in terms of 462 greenhouse gases (Fearnside, 2015a,b), this argument is likely to be used to favor 463 464 movement of smelting capacity to Brazil and other tropical locations with hydropower potential, such as the Congo. China's shift to domestic smelting is particularly 465 problematic in light of that country's recently announced commitment to reduce 466 467 emissions after 2030 (e.g., Petherick, 2015). In 2013 China used 302,913 GWh of electricity in smelting primary aluminum, or 49.5% of the global total and ten times 468 more than all of Latin America; 90% of the electricity China used for smelting 469 aluminum in 2013 came from coal (IAI, 2015). 470

- 471
- 472 473

Aluminum in the context of Brazil's energy policy

474 Brazil needs to develop "alternative" sources of energy, but this is only a part of what is needed in energy policy. Energy efficiency comes before "alternative" sources. 475 476 Improvements in transmission systems offer a major opportunity: Brazil's transmission 477 losses of 20%, for example, are double the losses in Argentina (Rey, 2012). Increased energy efficiency in both residential and industrial use also offers major opportunities 478 479 (Kishinami, 2012). Brazil's National Plan for Climate Change notes that 5% of the 480 country's electricity is used to heat water with electric showerheads, the replacement of which is an official goal (Brazil, CIMC, 2008, p. 58). Much of Brazil's bathwater could 481 be heated with solar water heaters without use of either electricity or fossil fuels (Costa, 482 2007). 483

484 First and foremost is the need for a thorough rethinking of energy uses and to what extent these uses are in the national interest. Recognizing the impacts of 485 486 hydroelectric dams, particularly as compared to other options, represents a central part 487 of this task. Hydroelectric dams have tremendous impacts, many of which are not widely known to the public at large and many of which are not considered, or not 488 properly assessed, in the current system of environmental licensing in Brazil and in 489 490 many other countries. The greater impacts and smaller benefits of hydropower, both as compared to the image that the hydroelectric industry and the Brazilian government 491 492 have promoted and as compared to many other options (Moreira, 2012), provides a 493 strong rationale for a change of course in Brazil's energy sector. These changes include elimination of low-value energy-intensive exports, encouragement of efficiency and 494 495 investment in sources such as wind and solar power. An additional reason for pursuing 496 alternatives to dams is concern that predicted climate change will significantly reduce the reliability of Amazonian hydropower (Kemenes et al., 2012). 497

Brazil's energy policy represents a set of problems of such scale and complexity that a common reaction is to assume that nothing can be done to change it. The key decisions are fragmented among different ministries: the Ministry of the Environment, which is the most concerned with environmental and social impacts of dams, has little influence on the Ministry of Mines and Energy, which promotes hydropower. The Ministry of Mines and Energy has little influence on the Ministry of Development, Industry and Commerce or the Ministry of Planning, Budget and Management, which 505 promote aluminum export. Essentially, planning decisions are made under the assumption that the Ministry of Mines and Energy will build however many dams are 506 needed to supply implied power demands and that the Ministry of the Environment will 507 fix any environmental problems that ensue. The pattern of investing enormous sums of 508 509 public funds in hydroelectric dams (through the National Bank for Economic and Social 510 Development, or BNDES), and of the government and taxpayers assuming the risk associated with these uninsurable enterprises, contrasts with the modest amounts 511 devoted to alternatives such as energy efficiency and generation from sources such as 512 513 wind, solar and tidal resources.

Massive problems such as the reform of Brazil's energy policies can be broken 514 down into more manageable components and addressed one at a time. Brazil 515 516 "consumed" 500.1 TWh of electricity in 2012 (Brazil, MME, 2012, p. 38). In reality, part of this electricity is not "consumed" by end-users in Brazil, but is instead exported 517 in electro-intensive commodities such as aluminum. A high-level decision not to export 518 this is a good place to start. Other "wedges" in Brazil's growing energy problem must 519 520 also be addressed, but this must not prevent action on each of the individual components of the problem, starting with aluminum. 521

522 523

524

The role of corruption

525 Because dam construction involves very large monetary sums, corruption is a 526 factor that can easily become an endemic part of decision making on these projects. In investigating the contracts for Tucuruí, Lúcio Flávio Pinto (a prominent journalist) 527 courageously made a series of charges of corruption against some of Brazil's most 528 529 powerful individuals (Pinto, 1991, p. 143). Corruption accusations surrounding construction of the Itaipu Dam, shared by Brazil and Paraguay, similarly emerged after 530 the dictatorships ended in these two countries in 1985 and 1986, respectively (Schilling 531 532 & Canese, 1991). The Itaipu dam, built by military governments on either side of the Paraná River, was further protected from questioning by being entrusted to a specially 533 534 created binational company that was exempt from the regulations on competitive bidding and financial accounting in either country. Corruption is believed to be an 535 536 important factor for many dams throughout the world in countries such as Malaysia (BMF, 2015), China (Peryman, 2008), Nepal (Shenker, 2010), Ethiopia (Plummer, 537 2009), India (Indian Express, 2011), and in Laos and other Mekong countries (Stuart-538 539 Fox, 2006; The Economist, 2012).

Surely one of the world's most notorious cases of corruption in dam building is 540 541 the Yacyretá Dam, located on the border between Argentina and Paraguay. Argentina's 542 president Carlos Menem famously called the dam a "monument to corruption" (Christian, 1990). The World Commission on Dams claimed that by 1994 the amount 543 544 stolen totaled US\$6 billion (World Bank, 2003, p. 59). Much of the funding had been 545 supplied by the World Bank, and the total lost to corruption was undoubtedly considerably more by the time the dam was finally completed in 2011, 31 years after its 546 first World Bank loan (Rich, 2013, pp. 49-52). Part of the power from Yacyretá 547 548 produces aluminum ingots, alloys and semi-manufactured products that Argentina exports to Brazil (Table 4). Paraguay incurred most of the social impacts, including 549 displacing 50,000 urban poor; with a total of over 70,000 people displaced, less than 550 551 19,000 had any sort of resettlement arrangement before the reservoir was filled in 1994 (Rich, 2013, p. 50). Paraguay had no need for the electricity as such: beginning in 1985 552 the country's share of the output from the Itaipu Dam on the border with Brazil has been 553

much more than Paraguay's total consumption, and most of Paraguay's share is sold toBrazil.

Data released by Brazil's Superior Electoral Court (TSE) show that the four 556 largest contributors to electoral campaigns in Brazil between 2002 and 2012 were 557 construction companies that build dams and other large infrastructure projects (Gama, 558 559 2013). Such contributions are extraordinarily profitable for the donating companies (Scofield Jr., 2011). Construction firms represented the largest sector contributing 560 donations to the electoral campaigns of Brazil's current president, including two of the top 561 three donors: Camargo Corrêa and Andrade Gutierrez (Zampier, 2010). It is relevant to 562 note the March 2015 confession of the chief executive officer of Camargo Corrêa (Brazil's 563 second-largest construction firm) that, in order to obtain 16% of the contracts for the Belo 564 565 Monte Dam, the company paid "propinas" (bribes) totaling R\$100 million (~US\$50 million at the time of the contracts in 2010) (Amazonas em Tempo, 2015). If the other 566 companies building Belo Monte paid in the same proportion, the total would be R\$600 567 million or US\$300 million for this dam, and Belo Monte is only one of various dams under 568 569 construction Brazil's Amazon region.

Impacts of dams in Amazonia

573 Losses to flooding

570 571

572

574 The fact that land is flooded by reservoirs is obvious and is the focus of almost 575 all consideration in environmental impact statements for dams in Brazil. The loss of land, and what could have been produced there had a dam not been built, is often 576 substantial (e.g., Mougeot, 1990; Santos et al., 1996). Natural features can also be lost, 577 the flooding of the Sete Quedas National Park by the Itaipu reservoir being the best-578 known example in Brazil. A current example is provided by the government's issuance 579 of a provisional measure (medida provisória), later enacted as Law No. 12,678/2012, 580 reducing areas of existing conservation units to make way for the first six dams 581 proposed in the Tapajós River Basin (see: Bermann, 2012b; Fearnside, 2015c). In 582 addition to forest loss to flooding, dams stimulate deforestation in surrounding areas 583 584 (e.g., Barreto et al., 2011).

Dislocation of human populations represents an impact that, because it is largely 585 non-monetary, has often received little weight in decisions on dam construction despite 586 a repeated pattern of dams provoking dramatic suffering in affected areas (Cernea, 587 588 1988; Goldsmith & Hildyard, 1984, 1986; McCully, 2001; Oliver-Smith, 2009; Scudder, 2006; Zhouri, 2011). The Tucuruí Dam (completed in 1984 on the Tocantins 589 590 River in Brazil's state of Pará) provides an example where 23,000 people were 591 displaced by the reservoir and where settlement areas experienced dramatic problems related to agriculture, health and lack of infrastructure (Fearnside, 1999). The number of 592 people to be displaced by the Belo Monte Dam on the Xingu River in Pará (where 593 594 construction began in late 2011) is far greater than those who are recognized by electrical authorities (Santos et al., 2009). In part this is due to the practice of defining 595 the affected population using criteria that consistently minimize the number of people 596 597 identified as affected, in practice limiting them to those whose land is directly flooded 598 by the reservoir (see: Hernandez & Santos, 2011; Vainer et al., 2009). The World Commission on Dams has conducted a worldwide review of resettlement from dams 599 600 indicating widespread occurrence of major impacts from loss of homes and livelihoods (WCD, 2000, pp. 97-133). Were principles of environmental justice accorded more 601

weight in Brazil's decision making, these considerations would count heavily againstdams and aluminum.

How decisions are made that imply disrupting the lives of tens of thousands of people, often including indigenous peoples and other traditional riverside communities, is a matter of social justice. Monetary costs of hydroelectric dams may be spread throughout society by collecting taxes and by higher electricity bills, but most human and environmental impacts are forced upon the comparatively few people who happen to live along the river that is dammed. Usually these people are far away from those who will receive the benefits (WCD, 2000).

The decision to build a dam in Brazil is made by a handful of people in 611 institutions such as Electrical Centers of Brazil (ELETROBRÁS), the National Bank of 612 613 Economic and Social Development (BNDES) and the presidential office's "Civil House" (Casa Civil) (e.g., Fearnside & Laurance, 2012). While the licensing process 614 may involve years of studies, hearings and "consultations," the decision to build the 615 dam in question has already been made in a real sense (as opposed to a theoretical or 616 617 legal sense). Those who will suffer the impacts have no voice or representation when the real decision is made (see examples in Fearnside, 1989, 1999, 2005a). 618

619

620 Downstream impacts

Impacts of dams go far beyond the area directly flooded by the reservoir. 621 622 Downstream impacts are largely ignored (Richter et al., 2010). In the case of Belo 623 Monte, people living downstream were considered not "directly" impacted (Brazil, ELETROBRÁS, 2009), and the government therefore does not provide indigenous 624 people with the same rights to consultations as would apply in the area to be flooded 625 (The Economist, 2013). The so-called "dry stretch" below Belo Monte is the result of 626 that dam's design, which diverts 80% of the water to the side through a series of canals, 627 to return to the river at a point approximately 100 km downstream (Brazil, 628 ELETROBRÁS, 2009). Two indigenous areas are located in the long stretch of river in 629 the "big bend" of the Xingu River that will have its water flow reduced to a minimal 630 amount, thus depriving the indigenous people and other residents of the fish that are 631 their main food source, as well as the river's role for transportation (de Sousa Júnior & 632 Reid, 2010; Santos & Hernandez, 2009). Additional discussion of downstream impacts 633 is included in the Supplementary Online Material. 634

635

636 Upstream impacts

Dams also block migration of fish, both ascending and descending the river 637 (Barthem & Goulding, 1997). Many species of fish in Amazonia have a "piracema," or 638 639 a mass migration ascending the tributaries in order to breed at the beginning of the flood season (Barthem et al., 1991). After breeding in the headwaters, the newly-born fish 640 drift down these tributaries with the current and then grow to adulthood in the mainstem 641 642 of the Amazon River (Carvalho & Fabré, 2006). This was the case for the large catfish such as dourada (Brachyplatatystoma rouxeauxii) and piramutaba (B. vaillantii) that 643 ascended the Madeira River to spawn in Bolivia and Peru (Barthem & Goulding, 1997; 644 645 Barthem et al., 1991). With 920 species, the Madeira was one of the rivers most richly endowed with fish in Brazil and in the world (Torrente-Vilara et al., 2013). The giant 646 647 catfish of the Madeira River had traditionally represented a significant economic and 648 dietary resource in the Brazilian portion of the river (Doria et al., 2012; Goulding, 1979). They also supported fisheries in Bolivia and Peru, including the fishing fleet at 649 Puerto Maldonado, Peru (Cañas & Pine III, 2011). Fish passages around these dams 650

have virtually no chance of maintaining this fish migration ascending the river, nor of
preventing mortality of the newly born fish descending the river (Fearnside, 2014a).
Additional discussion of upstream impacts is included in the Supplementary Online

654 Material.

655

656 Mercury

Mercury contamination can be one of the environmental and social costs of 657 hydroelectric development in Amazonia. Use of mercury in gold mining has released 658 hundreds of tons of mercury into the environment in Amazonia (Bastos et al., 2006, 659 2015; de Lacerda et al., 1989; Pfeiffer & de Lacerda, 1988). The source of mercury can 660 be gold mining done directly in the reservoir area, such as the mining that occurred in 661 662 the area recently flooded by the Madeira River dams and in areas planned for dams on 663 the Tapajós River and its tributaries (Boischio et al., 1995; Forsberg & Kemenes, 2006; Pfeiffer et al., 1991). However, mercury inputs from gold mining activity are not 664 necessary to have contamination, and reservoirs in areas without a history of gold 665 666 mining also have high levels of mercury, as at Balbina (Kashima et al., 2001; Kehring et al., 1998; Weisser, 2001). Because the soils in Amazonia are ancient, they have been 667 accumulating mercury over millions of years as dust from volcanic eruptions around the 668 669 world settles over the landscape (Roulet & Lucotte, 1995; Roulet et al., 1996). Additional discussion of mercury is included in the Supplementary Online Material. 670

671

672 Dam cascades

Another aspect of dams with major impacts that escape the current 673 environmental licensing process is the interconnection with other existing or planned 674 dams on the same river (Fearnside, 1999, 2001). This is an important difference from 675 other types of electrical generation, where each plant is independent of other plants. 676 Output of the downstream dams is increased by regulating water flows in a river, storing 677 water during the high-water period and releasing it during the low-water period (e.g., 678 Nilsson et al., 2005). This stored water generates electricity multiple times – once at the 679 680 upstream dam, and again at each downstream dam. This creates an embedded temptation to build more dams upstream of any dam being evaluated for licensing. In 681 the case of the Tucuruí Dam, which, in 1984, was the first in the Tocantins/Araguaia 682 watershed that covers much of southern Pará and northern Mato Grosso, a total of 26 683 dams were planned (Junk & de Mello, 1990). Of these, four have since been built (Table 684 685 1) and seven are planned (Table 2) in the portion of the basin that is in the Legal Amazon region. Planned projects include the Marabá Dam, which will displace 40,000 686 people (Rodrigues & Ribeiro Junior, 2010). 687

688 The extreme case is Belo Monte, where the Belo Monte Dam itself has a small storage capacity (virtually zero in active storage) relative to its installed capacity of 689 11,233 MW. The volume of water in the Xingu River varies so much over the annual 690 cycle that the 11,000 MW of the main powerhouse will be completely idle for 691 approximately four months each year, and only partially used for much of the 692 remainder. This is the root of the wider danger posed by Belo Monte, as Belo Monte by 693 694 itself is untenable without the water stored in the upstream dams that were publically 695 proposed until 2008 when the declared policy changed to claim that Belo Monte would be the only dam on the Xingu River (e.g., de Sousa Júnior & Reid, 2010). This claim 696 697 was made in a decision of the National Council on Energy Policy (CNPE), which is composed of ministers who change with each presidential administration. 698

Additional discussion of dam cascades is included in the Supplementary OnlineMaterial.

701

702 Hydropower and global warming

703 The Brazilian Association of Aluminum (ABAL) claims in its 2011 704 sustainability report that "Our aluminum is 'green' at the source, as it originates from clean and renewable energy" (ABAL, 2011, p. 4). Unfortunately, hydroelectric dams in 705 706 Amazonia emit greenhouse gases, particularly methane (CH₄). Dams in the humid 707 tropics emit more CH₄ than do those in other climatic zones (Barros et al., 2011; Demarty & Bastien, 2011). Dams produce methane because the water in a reservoir 708 stratifies into layers, with a warm layer (epilimnion) in the upper 2-10 m of water that is 709 710 in contact with the air and contains oxygen, and a cold layer (hypolimnion) at greater 711 depth where oxygen is quickly exhausted and decomposition of organic matter must end 712 in CH₄ rather than CO₂ (Fearnside & Puevo, 2012). Some of the methane generated escapes to the atmosphere as bubbles through the surface of the reservoir, and if the 713 714 reservoir is large relative to the volume of water passing through the dam, as at Balbina, this surface emission can be substantial (Kemenes et al., 2007). A smaller amount 715 escapes by diffusion, particularly in the first year or two after filling the reservoir (e.g., 716 717 Dumestre et al., 1999). However, what gives most tropical reservoirs their greatest impact on global warming is the water that passes through the turbines and spillways 718 (e.g., Abril et al., 2005). This water is drawn from well below the boundary 719 720 (thermocline) that separates the layers of water in the reservoir, and normally has high concentrations of methane (Fearnside, 2002). The water deep in the reservoir is under 721 pressure, which is immediately released as the water emerges from the turbines 722 (Fearnside, 2004). The solubility of gases decreases immediately when the pressure is 723 released, and solubility decreases further as the water gradually warms in the river 724 below the dam (Le Chatalier's Principle) (e.g., Battino & Clever, 1966; Joyce & Jewell, 725 2003). Much of the methane forms bubbles and is released immediately. The effect of 726 releasing the pressure is the same as occurs when one opens a bottle of a soft drink and 727 CO₂ that had been dissolved escapes as bubbles (see Fearnside, 2004). The impact of 728 tropical dams on global warming has often been underestimated, especially by the 729 730 hydropower industry (see Fearnside, 2015b).

ABAL's president supported his claim that hydroelectric power is "clean" energy by referring to studies by the FURNAS hydropower company indicating "100 times less carbon" being emitted by a dam that is six to ten years old, as compared to generating the same amount of electricity from fossil fuels (Azevedo, 2011). Various problems make this a misleading portrayal, particularly for the Belo Monte Dam that ABAL defends as "clean energy" (Azevedo, 2011) (Table 5).

737 738

739

[Table_5_here].

It is significant that ABAL casts aside any information from the notorious 740 Balbina Dam, calling this dam that flooded a vast area in exchange for very little energy 741 742 a "mistake committed in the past" that "doesn't reflect the reality of tropical lakes" (Azevedo, 2011). Unfortunately, Balbina is very relevant to Belo Monte and other 743 744 planned dams. The methodologies for methane estimation do not depend on whether the 745 decision to build the dam was a mistake. Balbina was, indeed, a tragic mistake that was obvious before that dam became a *fait accompli*; unfortunately, many of the features of 746 747 the decision-making process that led to the dam's construction are still evident today

748 (Fearnside, 1989, 2006). Other aspects of the Balbina experience are relevant: upstream of Belo Monte the dam that is best known as "Babaquara" (although it has officially 749 been renamed "Altamira," apparently in an attempt to minimize the effect of years of 750 criticisms of the plans) would have an area of 6140 km², or more than double that of 751 Balbina. The reservoir would have a 23-m vertical variation in the water level, making it 752 753 a tremendous "methane factory" (Fearnside, 2008, 2009, 2011). The ABAL text suggests that high greenhouse-gas emissions in Amazonian dams are restricted to 754 755 Balbina (where directly measured emissions exceed those of fossil fuels decades after the dam was built in 1987: Kemenes et al., 2007, 2008). However, high emissions have 756 also been directly measured at the Petit Saut Dam in French Guiana (e.g., Abril et al., 757 2005; Guérin et al., 2006) and they have been calculated based on available data at the 758 759 Tucuruí, Samuel and Curuá-Una Dams in Brazil (Fearnside, 2002, 2005a,b). Although 760 there is substantial variation among dams both in their emissions and in the amount of 761 power they produce, the pattern of Amazonian dams producing higher emissions than fossil fuels over long periods is, indeed, quite general. In the case of Belo Monte plus 762 763 Babaquara, the time needed to break even in terms of greenhouse gas emissions has 764 been calculated at 41 years (Fearnside, 2009). This is based on the conversion of CH₄ to 765 CO₂-equivalents from the second report of the Intergovernmental Panel on Climate 766 Change (IPCC), used in the Kyoto Protocol; subsequent revisions have greatly increased the impact of methane relative to CO₂, and therefore the impact of dams relative to 767 fossil fuels (see Table 5). The impacts of upstream dams in flooding large areas of 768 769 tropical forest in indigenous lands, in addition to producing methane, make Belo Monte and the aluminum produced from its power anything but clean. 770

It should be remembered that power for aluminum production is not exclusively
produced by dams. When reservoir levels are low, aluminum factories are supplied from
thermoelectric power plants. These emit greenhouse gases among other impacts.

774

775 Environmental licensing of dams

Environmental licensing of dams in Brazil proceeds through a sequence of steps, 776 777 beginning with a "preliminary license" (allowing preparations to begin and specifying conditions to be met), followed by an "installation license" (allowing the dam to be 778 779 built), and finally an "operating license" (allowing power generation to begin). The licensing of Belo Monte occurred under intense pressure from Brazil's presidential 780 office, and the process was facilitated by recent precedents set by similar forced 781 782 approval of the Madeira River dams (Fearnside, 2013, 2014b). Although the president of ABAL stated with reference to Belo Monte and other Amazonian dams that "the 783 environmental agencies duly granted the licenses after the projects had fulfilled all of 784 785 the demands made on them" (Azevedo, 2011), Belo Monte had and continues to have a long list of irregularities in its licensing by the Brazilian Institute of the Environment 786 and Renewable Natural Resources (IBAMA, the federal environmental agency). First, 787 788 the construction site was prepared on the strength of a "partial license," granted by IBAMA on February 1, 2010 (see ISA, 2010). This is a category of license that does not 789 exist in Brazilian legislation (it was invented by IBAMA when it granted a provisional 790 791 license to the Madeira River Dams on July 9, 2007, allowing these dams to move 792 forward before completing their environmental impact assessments: See Switkes & 793 Bonilha, 2008). On January 26, 2011 Belo Monte received a preliminary license from 794 IBAMA, which specified 40 "conditionalities" that would have to be met before an Installation License would be granted, plus an additional 26 conditionalities from 795

FUNAI (the agency for indigenous peoples) (see ISA, 2011a). Very little was done overthe ensuing months to fulfill these conditionalities (see: Xingu Vivo, 2011).

On June 1, 2011 the dam was granted an Installation License even though the 798 IBAMA technical staff had recommended against approval (Brazil, IBAMA, 2011; ISA, 799 2011b). The head of the agency was suddenly replaced and the new appointee 800 801 immediately granted the license. Only five of the 40 IBAMA conditionalities had been fulfilled at the time of the licensing according to non-governmental organizations and 802 803 16 according to IBAMA; approval without satisfying all conditionalities creates a 804 dangerous precedent for projects throughout the country. As of February 2014, almost three years after the Installation License was approved, the consortium building the dam 805 had only complied with three of the 19 conditionalities involving indigenous peoples 806 807 (ISA, 2014). This situation continues essentially unchanged and is being monitored by a group of non-governmental organizations (FGV, 2014). The value of a "conditionality" 808 becomes questionable if project developers can have a license from IBAMA without 809 fulfilling the requirement. In addition, at the time the new head of IBAMA signed the 810 811 Installation License no less than 12 legal suits against Belo Monte were still pending decisions in the courts over irregularities in the licensing process (the number grew to 812 20 by November 2013). Legal documentation on these can be consulted at 813 814 http://www.xinguvivo.org.br/. Proceeding with construction without resolving these issues risks damaging Brazil's democratic institutions because the large investments of 815 816 financial and political capital make the executive branch of government unlikely to 817 cancel the project if the judicial branch makes such a ruling (Fearnside, 2012). Although Brazil's licensing system is in evident need of reform, the current dominance of the 818 "ruralist" anti-environmental voting block in the National Congress means that 819 legislative initiatives to strengthen the system would instead be seized upon to further 820 weaken it; this limits the scope for improvement to efforts in other branches of 821 government and in civil society (Fearnside & Laurance, 2012). 822

823

824 Global implications

Global dam-building activity is increasingly focused on tropical areas in Africa, 825 Southeast Asia and Latin America. National decisions on promoting and subsidizing 826 827 dams and electro-intensive exports have multiple perverse effects on political processes in developing countries through the "resource curse" and other mechanisms. Decisions 828 on export priorities and on energy policies give little weight to the heavy environmental 829 830 and social costs of dam projects, as is evident in the example of Brazil. Such decisions may partly be the result of decision makers' lack of information about these impacts, 831 but they also fit the adage that "no noise is loud enough to wake someone who is 832 833 pretending to be asleep."

- 834
- 835 836

Conclusions

Barbourd bar

843 One of the ways that Brazil could reduce the destruction from Amazonian dams844 would be to stop exporting aluminum in the form of ingots or products (either

intermediate or final) that do not have a high benefit in terms of direct employment per unit of electricity consumed in the product's full production chain, including the smelting of primary aluminum. The benefits of aluminum have often been exaggerated, while the impacts of dams have been understated. Primary aluminum is the worst form in which this metal can be exported in terms of employment generation per gigawatt-hour of electricity consumed, but other products farther up the chain of transformation are also unattractive when the energy use of the primary aluminum from which they are made is included in the accounting. In addition to decisions on aluminum exports based on realistic assessments of the impacts of dams and the benefits of aluminum, Brazil needs broader reforms of its energy projections and policies in order to enjoy the uses of energy that increase wellbeing while not destroying the forests, rivers and societies of Amazonia.

Amazonian hydroelectric dams have impacts that are much more severe and wide-ranging than what has been portrayed by dam proponents. Social impacts are devastating for the people who happen to live in the area of a dam, including not only those in the flooded area but also those downstream and upstream of the dam who lose vital resources such as fish. Indigenous peoples and other traditional riverside residents (ribeirinhos) are often the victims. Environmental impacts extend to the entire river basin, including changes from altered sediment and water flows as well as loss of aquatic fauna and loss or disturbance of vast areas of forests, várzea (floodplain) and other ecosystems. Tropical dams also emit substantial quantities of greenhouse gases, often exceeding the cumulative emissions of fossil fuel generation for decades. For all of these reasons, hydropower is far from being "green" energy, and Brazil needs to make rapid changes in energy policy to curtail the announced expansion of Amazonian dams.

References

ABAL (Associação Brasileira do Alumínio). (2005). Sustainability Report Aluminum

874	Industry. São Paulo, SP, Brazil: ABAL. 46 pp.
875	http://www.abal.org.br/servicos/biblioteca/rel_sustentabilidade.asp
876	ABAL (Associação Brasileira do Alumínio). (2008). Sustainability Report of the
877	Brazilian Aluminum Industry 2006/2007. São Paulo, SP, Brazil: ABAL. 52 pp.
878	http://www.abal.org.br/servicos/biblioteca/rel_sustentabilidade_0607.asp
879	ABAL (Associação Brasileira do Alumínio). (2010). A indústria brasileira de alumínio
880	no rumo da economia de baixo carbono. São Paulo, SP, Brazil: ABAL, 6 pp.
881	http://www.abal.org.br/servicos/biblioteca/industria_brasileira_aluminio.asp
882	ABAL (Associação Brasileira do Alumínio). (2011). Sustainability Report of the
883	Brazilian Aluminum Industry 2010. São Paulo, SP, Brazil: ABAL. 60 pp.
884	http://www.abal.org.br/servicos/biblioteca/rel_sustentabilidade_ind_aluminio_2
885	010.asp
886	ABAL (Associação Brasileira do Alumínio). (2014). Anuário Estatístico / Statistical
887	<i>Yearbook – 2013</i> . São Paulo, SP, Brazil: ABAL. 64 pp.
888	Abril, G., Guérin, F., Richard, S., Delmas, R., Galy-Lacaux, C., Gosse, P.,
889	Matvienko, B. (2005). Carbon dioxide and methane emissions and the carbon
890	budget of a 10-years old tropical reservoir (Petit-Saut, French Guiana). Global
891	Biogeochemical Cycles, 19, GB 4007 doi: 10.1029/2005GB002457
892	Amazonas em Tempo. (2015). Delator deverá revelar propina em Belo Monte.
893	Amazonas em Tempo 7 March 2015, p. B-3.

894 Ansar, A., Flyvbjerg, B., Budzier, A., & Lunn, D. (2014). Should we build more large dams? The actual costs of hydropower megaproject development. Energy Policy, 895 69, 43-56. doi: 10.1016/j.enpol.2013.10.069 896 Azevedo, A. (2011). Réplica da Associação Brasileira do Alumínio (ABAL) à revista 897 Política Ambiental nº 7. 898 899 http://www.conservacao.org/publicacoes/files/politicaambiental7 replica.pdf Baran, E., Levin, S. A., So Nam, Rodríguez-Iturbe, I., & Ziv, G. (2012). Trading-off 900 901 fish biodiversity, food security, and hydropower in the Mekong River Basin. 902 Proceedings of the National Academy of Science USA, 109, 5609-5614. doi: 903 10.1073/pnas.1201423109 Barreto, P., Brandão Jr., A., Martins, H., Silva, D., Souza Jr., C., Sales, M., & Feitosa, 904 905 T. (2011). Risco de Desmatamento Associado à Hidrelétrica de Belo Monte. 906 Belém, PA, Brazil: Instituto do Homem e Meio Ambiente da Amazônia 907 (IMAZON), 98 pp. http://www.imazon.org.br/publicacoes/livros/risco-dedesmatamento-associado-a-hidreletrica-de-belo-monte/at download/file 908 909 Barros, N., Cole, J. J., Tranvik, L. J., Prairie, Y. T., Bastviken, D., Huszar, V. L. M., Roland, F. (2011). Carbon emission from hydroelectric reservoirs linked to 910 reservoir age and latitude. Nature Geoscience, 4, 593-596. 911 912 doi:10.1038/NGEO1211 Barthem, R., & Goulding, M. (1997). The Catfish Connection: Ecology, Migration, and 913 914 Conservation of Amazon Predators. New York, USA: Columbia University 915 Press. 184 pp. Barthem, R. B., Ribeiro, M. C. L. B., & Petrere Júnior, M. (1991). Life strategies of 916 some long distance migratory catfish in relation to hydroelectric dams in the 917 918 Amazon Basin. Biological Conservation, 5, 339-345. Bastos, W. R., Dórea, J. G., Bernardi, J. V. E., Lauthartte, L. C., Mussy, M. H., Lacerda, 919 L. D., & Malm, O. (2015). Mercury in fish of the Madeira River (temporal and 920 spatial assessment), Brazilian Amazon, Environmental Research, 140, 191-197. 921 doi: 10.1016/j.envres.2015.03.029 922 Bastos, W. R., Gomes, J. P. O., Oliveira, R.C., Almeida, R., Nascimento, E. L., Bernardi, 923 J. V. E., Pfeiffer, W. C. (2006). Mercury in the environment and riverside 924 925 population in the Madeira River Basin, Amazon, Brazil. Science of the Total Environment, 368, 344-351. doi: 10.1016/j.scitotenv.2005.09.048 926 Battino, R., & Clever, H. L. (1966). The solubility of gases in liquids. Chemical 927 928 Reviews, 66, 395-463. doi: 10.1021/cr60242a003 Bergsdal, H., Strømman, A. H., & Hertwich, E. G. (2004). The Aluminum Industry: 929 Environment, Technology, and Production. Report 8/2004, Trondheim, Norway: 930 931 Industrial Ecology Programme, Norwegian University of Science and Technology (NTNU). 44 pp. 932 http://www.ntnu.no/c/document library/get file?uuid=90a62bb5-9451-476e-933 934 abbf-076a6b42604d&groupId=10370 Bermann, C. (2002). Energia no Brasil: para quê? para quem? - crise e alternativas 935 para um país sustentável. Rio de Janeiro, RJ, Brazil: Projeto Brasil Sustentável e 936 937 Democrático, Federação dos Órgãos para Assistência Social e Educacional 938 (FASE) & São Paulo, SP, Brazil: Livraria da Física. 139 pp. 939 Bermann, C. (2004). Indústrias Eletrointensivas e Autoprodução: Propostas para uma 940 Política Energética de Resgate do Interesse Público. Rio de Janeiro, RJ, Brazil: Instituto de Desenvolvimento Estratégico do setor Energético (Ilumina). 941 942 http://www.ilumina.org.br/zpublisher/materias/Estudos Especiais.asp?id=15872

943	Bermann, C. (2011). Notas sobre la energía incorporada en la exportación de bienes
944	primarios en Brasil. Energía y Equidad, 1(1), 31-38.
945	Bermann, C. (2012a). O setor de eletro-intensivos. In: Moreira, P.F. (Ed.). Setor
946	Elétrico Brasileiro e a Sustentabilidade no Século 21: Oportunidades e Desafios
947	2 ^a ed., (pp. 28-34; 92-93). Brasília, DF, Brazil: Rios Internacionais.
948	Bermann, C. (2012b). O projeto da Usina Hidrelétrica Belo Monte: A autocracia
949	energética como paradigma. Novos Cadernos NAEA, 15, 5-23.
950	Bermann, C., & Martins, O. S. (2000). Sustentabilidade Energética no Brasil: Limites e
951	Possibilidades para uma Estratégia Energética Sustentável e Democrática.
952	(Série Cadernos Temáticos No. 1). Rio de Janeiro, RJ, Brazil: Projeto Brasil
953	Sustentável e Democrático, Federação dos Órgãos para Assistência Social e
954	Educacional (FASE), 151 pp.
955	BMF (Bruno Manser Fund). (2015). Stop corruption dams: Save the rainforest rivers of
956	Sarawak. http://www.stop-corruption-dams.org/
957	Boischio, A. A. P., Henshel, D., & Barbosa, A. C. (1995). Mercury exposure through
958	fish consumption by the Upper Madeira River population. <i>Ecosystem Health</i> , 1,
959	177-192.
960	Brazil, ANA (Agência Nacional de Águas). (nd [C. 2006]). Plano Estratégico de
961	Recursos Hídricos da Bacia dos Rios Tocantins e Araguaia: Relatório
962	Diagnóstico, Anexo 14, Geração de Energia. No. 1329-R-FIN-PLD-15-01.
963	Brasília, DF, Brazil: ANA, 56 pp. http://central2.to.gov.br/arquivo/31/933
964	Brazil, CIMC (Comitê Interministerial sobre Mudança do Clima). (2008). Plano
965	Nacional sobre Mudança do Clima – PNMC Brasil. Brasília, DF, Brazil:
966	Ministério do Meio Ambiente. 129 pp.
967	http://www.mma.gov.br/estruturas/imprensa/_arquivos/96_01122008060233.pdf
968	Brazil, ELETROBRÁS (Centrais Elétricas Brasileiras S/A). (1987). Plano 2010:
969	Relatório Geral. Plano Nacional de Energia Elétrica 1987/2010 (Dezembro de
970	1987). Brasília, DF, Brazil: ELETROBRÁS, 269 pp.
971	Brazil, ELETROBRÁS (Centrais Elétricas Brasileiras S/A). (2009). Aproveitamento
972	Hidrelétrico Belo Monte: Estudo de Impacto Ambiental. Fevereiro de 2009. Rio
973	de Janeiro, RJ, Brazil: ELETROBRÁS. 36 vols.
974	Brazil, ELETRONORTE (Centrais Elétricas do Norte do Brasil, S.A.). (1987).
975	Contribuição da Eletronorte para Atendimento das Necessidades Futuras de
976	Energia Elétrica da Amazônia. Brasília, DF, Brazil: ELETRONORTE, irregular
977	pagination.
978	Brazil, IBAMA (Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais
979	Renováveis). (2011). Parecer nº 52/2011AHE Belo Monte-
980	COHID/CGENE/DILIC/IBAMA. Ref: Análise da solicitação de Licença de
981	Instalação da Usina Hidrelétrica Belo Monte, processo nº 02001.001848/2006-
982	75. Brasília, DF, Brasil: IBAMA. 252 pp.
983	http://www.ibama.gov.br/licenciamento/index.php
984	Brazil, MME (Ministério das Minas e Energia). (1979). Portaria No. 1654 de 13 de
985	agosto de 1979. Diário Oficial da União. August 16, 1979. Section 1, Part 1, p.
986	11,705.
987	Brazil, MME (Ministério das Minas e Energia). (2009). Plano Decenal de Expansão de
988	Energia 2008/2017. Brasília, DF, Brazil: MME, Empresa de Pesquisa Energética
989	(EPE).

990	Brazil, MME (Ministério das Minas e Energia). (2011). Plano Decenal de Expansão de
991	Energia 2020. Brasília, DF, Brazil: MME, Empresa de Pesquisa Energética
992	(EPE). 2 vols. http://www.epe.gov.br/PDEE/20111229_1.pdf
993	Brazil, MME (Ministério das Minas e Energia). (2012). Plano Decenal de Expansão de
994	Energia 2021. Brasília, DF, Brazil: MME, Empresa de Pesquisa Energética
995	(EPE). 386 pp. http://www.epe.gov.br/PDEE/20120924_1.pdf
996	Brazil, MME (Ministério das Minas e Energia). (2014). Plano Decenal de Expansão de
997	Energia 2023. Brasília, DF, Brazil: MME, Empresa de Pesquisa Energética
998	(EPE). 2 vols.
999	http://www.epe.gov.br/PDEE/Relatório%20Final%20do%20PDE%202023.pdf
1000	Burns, S. (2013). Aluminum smelter price agreements with electricity companies
1001	outdated? MetalMiner March 26, 2013.
1002	http://agmetalminer.com/2013/03/26/aluminum-smelter-price-agreements-with-
1003	electricity-companies-outdated/
1004	Cañas, C. M., & Pine III, W. E. (2011). Documentation of the temporal and spatial
1005	patterns of Pimelodidae catfish spawning and larvae dispersion in the Madre de
1006	Dios River (Peru): insights for conservation in the Andean-Amazon headwaters.
1007	River Resource Applications, 27, 602–611. doi: 10.1002/rra.1377
1008	Cardoso, J. G. R., de Carvalho, P. S. L., da Fonseca, P. S. M., da Silva, M. M., & Rocio,
1009	M. A. R. (2011). A indústria do alumínio: estrutura e tendências. BNDES
1010	Setorial 33, pp. 43-88.
1011	http://www.bndes.gov.br/SiteBNDES/export/sites/default/bndes_pt/Galerias/Arq
1012	uivos/conhecimento/bnset/set3302.pdf
1013	Carmignani, F., & Avom, D. (2010). The social development effects of primary
1014	commodity export dependence. <i>Ecological Economics</i> , 70(2), 317-330.
1015	Carvalho, A.R., & Fabré, N. N. (2006). Da foz do Amazonas aos Andes. Ciência Hoje,
1016	39(233), 64-67.
1017	Cernea, M. M. (1988). Involuntary Resettlement in Development Projects: Policy
1018	Guidelines in World Bank-Financed Projects. (World Bank technical paper no.
1019	80), Washington, DC, USA: The World Bank. 88 pp.
1020	http://dx.doi.org/10.1596/0-8213-1036-4
1021	Christian, S. (1990). Buenos Aires journal – Billions flow to dam (and billions down the
1022	drain?). New York Times, May 4, 1990.
1023	http://www.nytimes.com/1990/05/04/world/buenos-aires-journal-billions-flow-
1024	to-dam-and-billions-down-drain.html
1025	Ciccantell, P. S. (1999a). It's all about power: The political economy and ecology of
1026	redefining the Brazilian Amazon. Sociological Quarterly, 40(2), 293-315.
1027	doi: 10.1111/j.1533-8525.1999.tb00549.x
1028	Ciccantell, P. S. (1999b). Making aluminum in the rainforest: The social impact of
1029	globalization in the Brazilian Amazon. Journal of Developing Areas, 33(2), 175-
1030	198.
1031	Ciccantell, P. S. (2005). Globalização e desenvolvimento baseado em matérias-primas:
1032	o caso da indústria do alumínio. Novos Cadernos NAEA, 8(2), 41-72.
1033	Coelho, M. C., Monteiro, M. A., & Santos, I. C. (2004). Políticas públicas, corredores
1034	de exportação, modernização portuária, industrialização e impactos territoriais e
1035	ambientais no município de Barcarena, Pará. Novos Cadernos NAEA, 11, 141-
1036	178.
1037	Collier, P. (2007). The Bottom Billion: Why the Poorest Countries Are Failing and
1038	What Can Be Done About it. Oxford, UK: Oxford University Press, 205 pp.

Costa, A. C. (2012). PIB fraco faz Brasil perder posto de 6ª economia do mundo. Exame 1039 31 August 2012. http://exame.abril.com.br/economia/noticias/pib-fraco-faz-1040 brasil-perder-posto-de-6a-economia-do-mundo 1041 Costa, R. N. A. (2007). Viabilidades Térmica, Económica e de Materiais de um Sistema 1042 Solar de Aquecimento de Água a Baixo Custo para Fins Residenciais. Masters 1043 dissertation in mechanical engineering, Natal, Rio Grande do Norte, Brazil: 1044 Universidade Federal de Rio Grande do Norte. 77 pp. 1045 http://bdtd.bczm.ufrn.br/tedesimplificado//tde arquivos/10/TDE-2008-02-1046 21T011110Z-1119/Publico/RaimundoNAC.pdf 1047 1048 Dai Qing (Ed.) (1994). Yangzi! Yangzi!. London, UK: Earthscan. 295 pp. de Andrade, M. L. A., Cunha, L. M. S., & Gandra, G. T. (2001). A indústria do 1049 1050 alumínio: desempenho e impactos da crise energética. Rio de Janeiro, RJ, 1051 Brazil: Banco Nacional de Desenvolvimento Econômico e Social (BNDES), BNDES Setorial, no. 14, 3-26, 1052 http://www.bndes.gov.br/SiteBNDES/export/sites/default/bndes_pt/Galerias/Arg 1053 1054 uivos/conhecimento/bnset/set1401.pdf de Lacerda, L. D., Pfeiffer, W. C., Ott, A. T., & da Silveira, E. G. (1989). Mercury 1055 contamination in the Madeira River, Amazon - Hg inputs to the environment. 1056 *Biotropica*, 21, 91-91. 1057 de Sousa Júnior, W. C., & Reid, J. (2010). Uncertainties in Amazon hydropower 1058 development: Risk scenarios and environmental issues around the Belo Monte 1059 dam. Water Alternatives, 3, 249-268. 1060 Demarty, M., & Bastien, J. (2011). GHG emissions from hydroelectric reservoirs in 1061 tropical and equatorial regions: Review of 20 years of CH₄ emission 1062 measurements. Energy Policy, 3, 4197-4206. doi:10.1016/enpol.2011.04.033 1063 Doria, C. R. C., Ruffino, M. L., Hijazi, N. C., & da Cruz, R. L. (2012). A pesca 1064 comercial na bacia do rio Madeira no estado de Rondônia, Amazônia brasileira. 1065 Acta Amazonica, 42, 9-40. 1066 do Rio, G. A. P. (1996). Relação espaço-indústria: a localização de plantas de alumínio 1067 na Amazônia. In: Santos, S. B. M., Britto, R. C., & Castro, E. R. (Eds.). Energia 1068 na Amazônia. (pp. 825-834). Belém, Pará, Brazil: Museu Paraense Emílio 1069 Goeldi, Universidade Federal do Pará, Associação de Universidades 1070 Amazônicas. 1071 Dumestre, J. F., Guezenec, J., Galy-Lacaux, C., Delmas, R., Richard, S.A., Labroue, L. 1072 1073 (1999). Influence of light intensity on methanotrophic bacterial activity in Petit-Saut reservoir, French Guiana. Applied Environmental Microbiology, 65, 534-539. 1074 The Economist. (2012). The Mekong River: Lies, dams and statistics. The Economist, 1075 1076 July 26, 2012. http://www.economist.com/blogs/banyan/2012/07/mekong-river The Economist. (2013). Dams in the Amazon: The rights and wrongs of Belo Monte. 1077 The Economist, May 4, 2013. 1078 http://www.economist.com/news/americas/21577073-having-spent-heavily-1079 make-worlds-third-biggest-hydroelectric-project-greener-brazil 1080 EMBRAER (Empresa Brasileira de Aeronáutica). (2012). EMBRAER relatório anual 1081 2011. São José dos Campos, SP, Brazil: EMBRAER. 134 pp. 1082 http://www.embraer.com/Documents/Relatorio Anual 2011 Port.pdf 1083 Fearnside, P. M. (1988). China's Three Gorges Dam: "Fatal" project or step toward 1084 modernization? World Development, 16, 615-630. doi:10.1016/0305-1085 750X(88)90190-8 1086

Fearnside, P. M. (1989). Brazil's Balbina Dam: Environment versus the legacy of the 1087 pharaohs in Amazonia. Environmental Management, 13, 401-423. doi: 1088 10.1007/BF01867675 1089 Fearnside, P. M. (1994). The Canadian feasibility study of the Three Gorges Dam 1090 proposed for China's Yangzi River: a grave embarrassment to the impact 1091 assessment profession. Impact Assessment, 12(1), 21-57. doi: 1092 10.1080/07349165.1994.9725849 1093 Fearnside, P. M. (1995). Hydroelectric dams in the Brazilian Amazon as sources of 1094 'greenhouse' gases. Environmental Conservation, 22(1), 7-19. 1095 doi:10.1017/S0376892900034020 1096 Fearnside, P. M. (1999). Social impacts of Brazil's Tucuruí Dam. Environmental 1097 1098 Management, 24, 485-495. doi: 10.1007/s002679900248 Fearnside, P. M. (2001). Environmental impacts of Brazil's Tucuruí Dam: Unlearned 1099 1100 lessons for hydroelectric development in Amazonia. Environmental Management, 27, 377-396. doi: 10.1007/s002670010156 1101 Fearnside, P. M. (2002). Greenhouse gas emissions from a hydroelectric reservoir 1102 (Brazil's Tucuruí Dam) and the energy policy implications. Water, Air and Soil 1103 Pollution, 133, 69-96. doi: 10.1023/A:1012971715668 1104 Fearnside, P. M. (2004). Greenhouse gas emissions from hydroelectric dams: 1105 controversies provide a springboard for rethinking a supposedly "clean" energy 1106 source. Climatic Change, 66, 1-8. doi: 10.1023/B:CLIM.0000043174.02841.23 1107 Fearnside, P. M. (2005a). Brazil's Samuel Dam: Lessons for hydroelectric development 1108 policy and the environment in Amazonia. Environmental Management, 35, 1-19. 1109 doi: 10.1007/s00267-004-0100-3 1110 Fearnside, P. M. (2005b). Do hydroelectric dams mitigate global warming? The case of 1111 1112 Brazil's Curuá-Una Dam. Mitigation and Adaptation Strategy for Global Change, 10, 675-691. doi: 10.1007/s11027-005-7303-7 1113 Fearnside, P. M. (2006). Dams in the Amazon: Belo Monte and Brazil's hydroelectric 1114 development of the Xingu River Basin. Environmental Management, 38, 16-27. 1115 doi: 10.1007/s00267-005-00113-6 1116 Fearnside, P. M. (2008). Hidrelétricas como "fábricas de metano": O papel dos 1117 reservatórios em áreas de floresta tropical na emissão de gases de efeito estufa. 1118 Oecologia Brasiliensis, 12, 100-115. doi: 10.4257/oeco.2008.1201.11 (English 1119 translation available at: 1120 1121 http://philip.inpa.gov.br/publ_livres/mss%20and%20in%20press/Fearnside%20 Hydro%20GHG%20framework.pdf) 1122 Fearnside, P. M. (2009). As hidrelétricas de Belo Monte e Altamira (Babaquara) como 1123 fontes de gases de efeito estufa. Novos Cadernos NAEA, 12, 5-56. (English 1124 translation available at: 1125 http://philip.inpa.gov.br/publ livres/mss%20and%20in%20press/Belo%20Mont 1126 e%20emissions-Engl.pdf) 1127 Fearnside, P. M. (2011). Gases de efeito estufa no EIA-RIMA da Hidrelétrica de Belo 1128 Monte. Novos Cadernos NAEA, 14, 5-19. 1129 Fearnside, P. M. (2012). Will Brazil's Belo Monte Dam get the green light? Latin 1130 America Energy Advisor, August 27-31, 2012, 1 & 4. 1131 Fearnside, P. M. (2013). Decision-making on Amazon dams: Politics trumps 1132 uncertainty in the Madeira River sediments controversy. Water Alternatives, 6, 1133 1134 313-325.

1135	Fearnside, P. M. (2014a). Impacts of Brazil's Madeira River dams: Unlearned lessons
1136	for hydroelectric development in Amazonia. Environmental Science & Policy,
1137	38, 164-172. doi: 10.1016/j.envsci.2013.11.004
1138	Fearnside, P. M. (2014b). Brazil's Madeira River dams: A setback for environmental
1139	policy in Amazonian development. Water Alternatives, 7, 156-169.
1140	Fearnside, P. M. (2014c). Análisis de los Principales Proyectos Hidro-Energéticos en la
1141	Región Amazónica. Lima, Peru: Derecho, Ambiente y Recursos Naturales
1142	(DAR), Centro Latinoamericano de Ecología Social (CLAES), & Panel
1143	Internacional de Ambiente y Energia en la Amazonia. 55 pp.
1144	http://www.dar.org.pe/archivos/publicacion/147_Proyecto_hidro-energeticos.pdf
1145	Fearnside, P. M. (2015a). Tropical hydropower in the Clean Development Mechanism:
1146	Brazil's Santo Antônio Dam as an example of the need for change. Climatic
1147	Change, 131, 575-589. doi: 10.1007/s10584-015-1393-3
1148	Fearnside, P. M. (2015b). Emissions from tropical hydropower and the IPCC.
1149	Environmental Science & Policy, 50, 225-239. doi:
1150	10.1016/j.envsci.2015.03.002
1151	Fearnside, P. M. (2015c). Amazon dams and waterways: Brazil's Tapajós Basin plans.
1152	Ambio, 44, 426-439. doi: 10.1007/s13280-015-0642-z
1153	Fearnside, P. M., & Laurance, W. F. (2012). Infraestrutura na Amazônia: As lições dos
1154	planos plurianuais. Caderno CRH, 25(64), 87-98. doi: 10.1590/S0103-
1155	49792012000100007
1156	Fearnside, P. M., & Pueyo, S. (2012). Underestimating greenhouse-gas emissions from
1157	tropical dams. Nature Climate Change, 2, 382-384. doi: 10.1038/nclimate1540
1158	FGV (Fundação Getúlio Vargas). (2014). Metodologia e Matriz de Indicadores.
1159	Novembro/2014.
1160	http://www.indicadoresdebelomonte.com.br/2014/12/metodologia-e-matriz-de-
1161	indicadores/
1162	Finer, M., & Jenkins, C. N. (2012). Proliferation of hydroelectric dams in the Andean
1163	Amazon and implications for Andes-Amazon connectivity, PLoS ONE, 7(4),
1164	e35126. doi: 10.1371/journal.pone.0035126
1165	Fisher, W. F. (Ed.) (1995). Toward Sustainable Development? Struggling over India's
1166	Narmada River. London, UK: M.E. Sharpe, 481 pp.
1167	Forsberg, B. R., & Kemenes, A. (2006). Parecer técnico sobre estudos
1168	hidrobiogeoquímicos, com atenção específica à dinâmica do mercúrio (Hg). In:
1169	Pareceres Técnicos dos Especialistas Setoriais—Aspectos Físicos/Bióticos.
1170	Relatório de Análise do Conteúdo dos Estudos de Impacto Ambiental (EIA) e do
1171	Relatório de Impacto Ambiental (RIMA) dos Aproveitamentos Hidrelétricos de
1172	Santo Antônio e Jirau no Rio Madeira, Estado de Rondônia. Porto Velho,
1173	Rondônia, Brazil: Ministério Público do Estado de Rondônia, Parte B, Vol. I,
1174	Parecer 2, pp. 1-32.
1175	http://philip.inpa.gov.br/publ_livres/Dossie/Mad/Documentos%20Oficiais/Made
1176	ira_COBRAPE/11118-COBRAP-report.pdf
1177	Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W.,
1178	Whorf, T. (2007). Changes in Atmospheric Constituents and Radiative Forcing.
1179	In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Avert, K. B.,
1180	Miller, H. L. (Eds.). Climate Change 2007: The Physical Science Basis.
1181	Contribution of Working Group to the Fourth Assessment Report of the
1182	Intergovernmental Panel on Climate Change. (pp. 129-234). Cambridge, UK:
1183	Cambridge University Press. 996 pp.

1184	Gama, P. (2013). Maiores doadores somam gasto de R\$1 bi desde 2002. Construtores e
1185	bancos são principais financiadores de campanhas eleitorais. <i>Folha de São Paulo</i>
1186	January 21, 2013. p A-6.
1187	Gitlitz, J. (1993). The Relationship between Primary Aluminum Production and the
1188	Damming of World Rivers. IRN Working Paper 2, Berkeley, California, U.S.A.:
1189	International Rivers Network (IRN). 151 pp.
1190	Goldsmith, E., & Hildyard, N. (1984). The Social and Environmental Effects of Large
1191	Dams. San Francisco, California, USA: Sierra Club Books. 404 pp.
1192	Goldsmith, E., & Hildyard, N. (1986). The Social and Environmental Effects of Large
1193	Dams: Volume 2: Case Studies. Wadebridge Ecological Centre, Camelford, UK.
1194	331 pp.
1195	Goulding, M. (1979). Ecologia da pesca do rio Madeira. Manaus, Amazonas, Brazil:
1196	Instituto Nacional de Pesquisas da Amazônia (INPA). 172 pp.
1197	Grumbine, R. E., & Xu, J. (2011). Mekong hydropower development. Science, 332,
1198	178-179. doi: 10.1126/science.1200990
1199	Guérin, F., Abril, G., Richard, S., Burban, B., Reynouard, C., Seyler, P., & Delmas, R.
1200	(2006). Methane and carbon dioxide emissions from tropical reservoirs:
1201	Significance of downstream rivers. Geophysical Research Letters, 33, L21407
1202	doi: 10.1029/2006GL027929
1203	Hernandez, F. M., & Santos, S. B. M. (2011). Ciência, cientistas e democracia
1204	desfigurada: O caso de Belo Monte. Novos Cadernos NAEA, 14(1), 79-96.
1205	Highbeam Business. (2010). Alcoa may cut Brazilian capacity. Highbeam Business,
1206	May 21, 2010. http://business.highbeam.com/436402/article-1G1-
1207	228435110/alcoa-may-cut-brazilian-capacity
1208	IAI (International Aluminium Institute). (2015). Primary aluminium smelting power
1209	consumption. Date of Issue: 15 Oct 2014. http://www.world-
1210	aluminium.org/statistics/primary-aluminium-smelting-power-consumption/
1211	ICOLD (International Commission on Large Dams). (2014). World Register of Dams,
1212	general synthesis. http://www.icold-
1213	cigb.org/GB/World_register/general_synthesis.asp (Accessed February14, 2014)
1214	Indian Express. (2011). Former Kerala minister gets jail for graft twenty years after the
1215	Kerala government initiated the prosecution in the Idamalayar Dam corruption
1216	case. Indian Express, February 11, 2011. http://indianexpress.com/article/news-
1217	archive/web/former-kerala-minister-gets-jail-for-graft/
1218	International Rivers. (2012). Dams in Amazonia. Berkeley, CA, USA: International
1219	Rivers. http://www.dams-info.org/en
1220	ISA (Instituto Socioambiental). (2010). MMA libera Belo Monte sem conhecer os
1221	impactos da obra. Notícias Socioambientais February 2, 2010.
1222	http://www.socioambiental.org/nsa/detalhe?id=3029
1223	ISA (Instituto Socioambiental). (2011a). Governo empurra Belo Monte goela abaixo.
1224	Notícias Socioambientais February 1, 2011.
1225	http://www.socioambiental.org/nsa/detalhe?id=3246
1226	ISA (Instituto Socioambiental). (2011b). Ibama ignora MPF e OEA e libera licença para
1227	obras de Belo Monte no Rio Xingu. Notícias Socioambientais June 2, 2011.
1228	http://www.socioambiental.org/nsa/detalhe?id=3350
1229	ISA (Instituto Socioambiental). (2014). Nota Técnica – Estado de Cumprimento das
1230	Condicionantes Referentes à Proteção das Terras Indígenas Impactadas pela
1231	Usina Belo Monte. 13 de fevereiro de 2014. Altamira, Pará, Brazil: ISA
1232	Programa Xingu.

1233	http://www.socioambiental.org/sites/blog.socioambiental.org/files/nsa/arquivos/
1234	nota_tecnicacondicionantes_indigenas_final_pdf1.pdf
1235	Joyce, J., & Jewell, P. W. (2003). Physical controls on methane ebullition from
1236	reservoirs and lakes. Environmental Engineering and Geoscience, 9, 167-178.
1237	Junk, W. J., de Mello, J. A. S. N. (1990). Impactos ecológicos das represas hidrelétricas na
1238	bacia amazônica brasileira. Estudos Avançados, 4(8), 126-143. doi:
1239	10.1590/S0103-40141990000100010
1240	Kashima, Y., Akagi, H., Kinjo, Y., Malm, O., Guimarães, J. R. D., Branches, F., & Doi,
1241	R. (2001). Selenium and mercury concentrations in fish from the lower Tapajos
1242	River and the Balbina Reservoir, Brazilian Amazon. In: 6th International
1243	Conference on Mercury as a Global Pollutant (ICMGP). Oct. 15-19, 2001,
1244	Minamata, Japan. (p. 280). Minamata, Japan: ICMGP.
1245	Kehring, H. A., Malm, O., Akagi, H., Guimarães, J. R. D., & Torres, J. P. M. (1998).
1246	Methylmercury in fish and hair samples from the Balbina Reservoir, Brazilian
1247	Amazon. Environmental Research, 77, 84-90.
1248	Kemenes, A., dos Santos, C. A. C., & Satyamurty, P. (2012). Mudança do clima e
1249	geração de energia. Ciência Hoje, 50(295), 37-41.
1250	Kemenes, A., Forsberg, B. R., & Melack, J. M. (2007). Methane release below a
1251	tropical hydroelectric dam. Geophysical Research Letters, 34, L12809. doi:
1252	10.1029/2007GL029479.55
1253	Kemenes, A., Forsberg, B. R., & Melack, J. M. (2008). As hidrelétricas e o aquecimento
1254	global. <i>Ciência Hoje</i> , 41(145), 20-25.
1255	Khagram, S. (2004). Dams and Development: Transnational Struggles for Water and
1256	Power. Ithaca, New York, USA: Cornell University Press. 270 pp.
1257	Kishinami, R. (2012). A eficiência energética como componente da eficiência
1258	econômica. In: Moreira, P.F. (Ed.). Setor Elétrico Brasileiro e a
1259	Sustentabilidade no Século 21: Oportunidades e Desafios 2 ^a ed. (pp. 37-39).
1260	Brasília, DF, Brazil: Rios Internacionais.
1261	LME (London Metal Exchange). (2015). Historical price graph for aluminum.
1262	http://www.lme.com/en-gb/metals/non-ferrous/aluminium/#tab2
1263	Machado, G., Schaeffer, R., & Worrell, E. (2001). Energy and carbon embodied in the
1264	international trade of Brazil: An input-output approach. Ecological Economics,
1265	39(3), 409-424.
1266	Massarente, M., Serrano, A., Machado, L., Hara, L., & Frazão, V. (2013). Alumínio no
1267	Brasil: Transformações nos últimos 15 anos. São Paulo, SP, Brazil: Bain &
1268	Company, Inc 17 pp.
1269	http://www.bain.com/offices/saopaulo/pt/Images/ALUMINIO%20BRASIL_PO
1270	RT.pdf
1271	McCully, P. (2001). Silenced Rivers: The Ecology and Politics of Large Dams: Enlarged
1272	and Updated Edition. New York, NY, U.S.A.: Zed Books, 359 pp.
1273	Misser, F. (2013). La Saga d'Inga: L'Histoire des Barrages du Fleuve Congo. Paris,
1274	France: Éditions L'Harmattan. 221 pp.
1275	Monteiro, M. A., & Monteiro, E. F. (2007). Amazônia: Os (dês) caminhos da cadeia
1276	produtiva do alumínio. Novos Cadernos NAEA, 10, 87-102.
1277	Moreira, P. F. (Ed.). (2012). O Setor Elétrico Brasileiro e a Sustentabilidade no Século
1278	21: Oportunidade e Desafios, 2 ^a ed. Brasília, DF, Brazil: Rios Internacionais,
1279	100 pp. http://www.internationalrivers.org/node/7525
1280	Morgan, A. E. (1971). Dams and other Disasters: A Century of the Army Corps of
1281	Engineers in Civil Works. Boston, Massachusetts, USA: Porter Sargent. 421 pp.

Morse, B., Berger, T., Gamble, D., & Brody, H. (1992). Sardar Sarovar: Report of the 1282 Independent Review. Ottawa, Canada: Resources Futures International. 363 pp. 1283 Mougeot, L. J. A. (1990). Future hydroelectric development in Brazilian Amazonia: 1284 Towards comprehensive population resettlement. In: Goodman, D., & Hall, A. 1285 (Eds.). The Future of Amazonia: Destruction or Sustainable Development? (pp. 1286 90-129). London, UK: Palgrave Macmillan. 1287 Müller-Plantenberg, C. (2006). Social and ecological impacts of the bauxite-energy-1288 aluminium product line: steps towards sustainable metal management. In: von 1289 Gleich, A., Ayres R.U., & Gössling-Reisemann, S. (Eds.). Sustainable Mining 1290 Management: Securing Our Future - Steps Towards a Closed Loop Economy. 1291 (pp. 449-482). Dordrecht, the Netherlands: Springer. 1292 1293 Myhre, G., Shindell, D., Bréon, F.-M., Collins W., Fuglestvedt, J., Huang, J., Young, P. (2013). Anthropogenic and natural radiative forcing. In: Stocker, T. 1294 F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., ... Midgley, 1295 P. M. (Eds.). Climate Change 2013: The Physical Science Basis. Working Group 1296 1297 I Contribution to the IPCC Fifth Assessment Report. (pp. 661-740.) Cambridge University Press, Cambridge, UK. http://www.ipcc.ch/report/ar5/wg1/ 1298 Nappi, C. (2013). The Global Aluminium Industry 40 years from 1972. International 1299 Aluminium Institute (IAI). 27 pp. http://www.world-1300 aluminium.org/media/filer public/2013/02/25/an outlook of the global alumi 1301 nium industry 1972 - present day.pdf 1302 1303 Nilsson, C., Reidy, C. A., Dynesius, M., & Revenga, C. (2005). Fragmentation and flow regulation of the world's large river systems. Science, 308, 405-408. 1304 Norseth, T. (Ed.). (1995). Environmental and Health Aspects Related to the Production 1305 of Aluminium. Special issue of Science of The Total Environment. Science of the 1306 1307 Total Environment, 163(1-3), 28-227. Nüsser, M. (2003). Political ecology of large dams: a critical review. Petermanns 1308 Geographische Mitteilungen, 147, 20-27. http://www.sai.uni-1309 heidelberg.de/geo/pdfs/Nuesser 2003 PoliticalEcologyOfLargeDams PGM 14 1310 7(1) 20-27.pdf 1311 1312 Oliver-Smith, A. (Ed.). (2009). Development and Dispossession: The Crisis of Development Forced Displacement and Resettlement. London, UK: SAR Press, 1313 344 pp. 1314 Ometto, J. P., Cimbleris, A. C. P., dos Santos, M. A., Rosa, L. P., Abe, D., Tundisi, J. 1315 1316 G., Roland, F. (2013). Carbon emission as a function of energy generation in hydroelectric reservoirs in Brazilian dry tropical biome. Energy Policy, 58, 109-1317 116. doi: 10.1016/j.enpol.2013.02.041 1318 1319 Ometto, J. P., Pacheco, F. S., Cimbleris, A. C. P., Stech, J. L., Lorenzzetti, J. A., Assireu, A., Roland, F. (2011). Carbon dynamic and emissions in Brazilian 1320 hydropower reservoirs. In: de Alcantara E. H. (Ed.). Energy Resources: 1321 Development, Distribution, and Exploitation. (pp. 155-188). Hauppauge, NY, 1322 USA: Nova Science Publishers. 1323 Pegg, S. (2003). Poverty Reduction or Poverty Exacerbation? World Bank Group 1324 Support for Extractive Industries in Africa. Washington, DC, U.S.A.: 1325 Environmental Defense, 39 pp. Available at: 1326 http://www.oxfamamerica.org/static/oa3/files/poverty-reduction-or-poverty-1327 exacerbation.pdf 1328 Peryman, L. (2008). Three Gorges dam is black hole of corruption, says Chinese 1329 journalist. Probe International, October 19, 2008. 1330

1331	http://journal.probeinternational.org/2008/10/19/three-gorges-dam-black-hole-
1332	corruption-says-chinese-journalist-3/
1333	Petherick, A. (2015). A tandem production. Nature Climate Change, 5, 17-18. doi:
1334	10.1038/nclimate2478
1335	Pfeiffer, W. C., & de Lacerda, L. D. (1988). Mercury inputs into the Amazon region,
1336	Brazil. Environmental Technology Letters, 9, 325-330.
1337	Pfeiffer, W. C., Malm, O., Souza, C. M. M., de Lacerda, L. D., Silveira, E. G., &
1338	Bastos, W. R. (1991). Mercury in the Madeira River ecosystem, Rondônia,
1339	Brazil. Forest Ecology and Management, 38, 239-245.
1340	Pinto, L. F. (1991). Amazônia: A Fronteira do Caos. Belém, PA, Brazil: Editora
1341	Falangola. 159 pp.
1342	Pinto, L. F. (1997). Amazônia: O Século Perdido (A Batalha do Alumínio e outras
1343	Derrotas da Globalização). Belém, PA, Brazil: Editora Jornal Pessoal. 160 pp.
1344	Plummer, J. (Ed.). (2009). Diagnosing Corruption in Ethiopia. Washington, DC,
1345	U.S.A.: The World Bank. 417 pp. http://www-
1346	wds.worldbank.org/external/default/WDSContentServer/WDSP/IB/
1347	2012/06/15/000386194_20120615035122/Rendered/PDF/
1348	699430PUB0Publ067869B09780821395318.pdf
1349	Reese, G., & Jacob, L. (2015). Principles of environmental justice and pro-
1350	environmental action: A two-step process model of moral anger and
1351	responsibility to act. Environmental Science & Policy, 51, 88-94. doi:
1352	10.1016/j.envsci.2015.03.011
1353	Reuters. (2013). Rio Tinto puts off plans for Paraguay aluminum plant. Reuters,
1354	December 10, 2013. http://www.reuters.com/article/2013/12/10/riotinto-
1355	paraguay-idUSL1N0JP1MD20131210
1356	Rey, O. (2012). Um olhar para as grandes perdas de energia no sistema de —
1357	transmissão elétrico brasileiro. In: Moreira P. F. (Ed.). Setor Elétrico Brasileiro
1358	e a Sustentabilidade no Século 21: Oportunidades e Desafios 2 ^a ed. (pp. 40-44).
1359	Brasília, DF, Brazil: Rios Internacionais.
1360	Ribeiro, I. (2009). Grupo Votorantim fará alumínio em Trinidad e Tobago. Valor
1361	<i>Econômico</i> , December 4, 2009.
1362	http://www.valor.com.br/imprimir/noticia/797521/arquivo/797521/grupo-
1363	votorantim-fara-aluminio-em-trinidad-e-tobago
1364	Rich, B. (2013). Foreclosing the Future: The World Bank and the Politics of
1365	Environmental Destruction. Covelo, Oregon, U.S.A.: Island Press. 303 pp.
1366	Richter, B. D., Postel, S., Revenga, C., Scudder, T., Lehner, B., Churchill, A., & Chow,
1367	M. (2010). Lost in development's shadow: The downstream human
1368	consequences of dams. <i>Water Alternatives</i> , 3(2), 14-42.
1369	Rodrigues, F. S., & Ribeiro Junior, R. (2010). Construção do AHE Marabá: Uma
1370	abordagem sobre opções de desenvolvimento e o seu planejamento. <i>III Encontro</i>
1371	Latinoamericano de Ciências Sociais e Barragens. Belém, Pará, Brazil.
1372	http://www.ecsbarragens.ufpa.br/site/cd/ARQUIVOS/GT6-42-109-
1373 1274	20101111185313.pdf Poss M L (2001) Extractive Sectors and the Poor Poston MA USA: Oxfam
1374 1375	Ross, M. L. (2001). <i>Extractive Sectors and the Poor</i> . Boston, MA, U.S.A.: Oxfam America, 24 pp. Available at:
1375	http://www.oxfamamerica.org/static/oa3/files/extractive-sectors-and-the-
1377	poor.pdf

1378	Roulet, M., & Lucotte, M. (1995). Geochemistry of mercury in pristine and flooded
1379	ferralitic soils of a tropical rain forest in French Guiana, South America. Water,
1380	Air and Soil Pollution, 80, 1079-1088.
1381	Roulet, M., Lucotte, M., Rheault, I., Tran, S., Farella, N., Canuel, R., Amorim, M.,
1382	(1996). Mercury in Amazonian soils: Accumulation and release. In: Bottrell,
1383	S.H. (Ed.). Proceedings of the Fourth International Symposium on the
1384	Geochemistry of the Earth's Surface, Ilkely, (pp. 453-457). Leeds, UK:
1385	University of Leeds.
1386	Sachs, J., & Warner, A. M. (1995). Natural resource abundance and economic growth.
1387	Development discussion paper No. 517a. Cambridge, MA, U.S.A.: Harvard
1388	Institute for International Development (HIID), 47 pp. Available at:
1389	http://www.nber.org/papers/w5398.pdf
1390	Santos, S. B. M., Britto, R. C., & Castro, E. R. (Eds.). (1996). Energia na Amazônia.
1391	Belém, Pará, Brazil: Museu Paraense Emílio Goeldi, Universidade Federal do
1392	Pará, & Associação de Universidades Amazônicas. 966 pp.
1393	Santos, S. B. M., & Hernandez, F. M. (Eds.). (2009). Painel de Especialistas: Análise
1394	Crítica do Estudo de Impacto Ambiental do Aproveitamento Hidrelétrico de
1395	Belo Monte. Belém, Pará, Brazil: Painel de Especialistas sobre a Hidrelétrica de
1396	Belo Monte. 230 pp. http://www.xinguvivo.org.br/wp-
1397	content/uploads/2010/10/Belo Monte Painel especialistas EIA.pdf
1398	Santos, S. B. M., Marin, R. A., & Castro, E. (2009). Análise de situações e dados
1399	sociais, econômicos e culturais. In: Santos, S. B. M., & Hernandez, F. M. (Eds.).
1400	Painel de Especialistas: Análise Crítica do Estudo de Impacto Ambiental do
1401	Aproveitamento Hidrelétrico de Belo Monte. (pp. 23-34). Belém, PA, Brazil:
1402	Painel de Especialistas sobre a Hidrelétrica de Belo Monte.
1403	http://www.xinguvivo.org.br/wp-
1404	content/uploads/2010/10/Belo_Monte_Painel_especialistas_EIA.pdf
1405	Schilling, P. R., & Canese, R. (1991). Itaipu: Geopolítica e Corrupção. Rio de Janeiro,
1406	RJ, Brazil: Centro Ecumênico de Documentação e Informação (CEDI). 53 pp.
1407	Scofield Jr., G. (2011). Empreiteiras recebem R\$ 8,5 por cada real doado a campanha de
1408	políticos. O Globo [Rio de Janeiro], 7 May 2011.
1409	http://oglobo.globo.com/economia/empreiteiras-recebem-85-por-cada-real-
1410	doado-campanha-de-politicos-2773154#ixzz1vFriSQgF
1411	Scudder, T. (2006). The Future of Large Dams: Dealing with Social, Environmental,
1412	Institutional and Political Costs. London, UK: Routledge, 408 pp.
1413	Shenker, J. (2010). Dam dilemma. Guernica, September 15, 2010.
1414	https://www.guernicamag.com/features/shenker_9_15_10/
1415	Stuart-Fox, M. (2006). The political culture of corruption in the Lao PDR. Asian Studies
1416	<i>Review</i> , 30, 59–75. doi: 10.1080=10357820500537054
1417	Switkes, G. (2005). Foiling the Aluminum Industry: A Toolkit for Communities,
1418	Activists, Consumers, and Workers. Berkeley, CA, USA: International Rivers
1419	Network, 53 pp. http://www.internationalrivers.org/files/Foiling2005.pdf
1420	Switkes, G., & Bonilha, P. (2008). Muddy Waters: Impacts of Damming the Amazon's
1421	Principal Tributary. São Paulo, SP, Brazil: International Rivers, 234 pp.
1422	http://www.internationalrivers.org/resources/muddy-waters-impacts-of-
1423	damming-the-amazon-s-principal-tributary-3967
1424	Tollefson, J. (2011). A struggle for power: Brazil is developing the last great untapped
1425	reserve of hydroelectricity, the Amazon basin. Nature, 479, 160-161. doi:
1426	10.1038/479160a

1427	Torrente-Vilara, G., de Queiroz, L. J., & Ohara, W. M. (2013). Um breve histórico
1428	sobre o conhecimento da fauna de peixes do Rio Madeira. In: De Queiroz, L. J.,
1429	Ohara, W., Zuanon, J., Pires, T.H.S., Torrente-Vilara, G., Doria, C. R., C. (Eds.)
1430	Peixes do Rio Madeira. (pp. 19-25). São Paulo, SP, Brazil: Dialeto.
1431	Trefis. (2013). Rio Tinto shelves \$4 billion aluminum smelter plan in Paraguay. Trefis,
1432	December 16, 2013. http://www.trefis.com/stock/rio/articles/219055/rio-tinto-
1433	shelves-4-billion-aluminum-smelter-plan-in-paraguay/2013-12-16
1434	US, DOE (Department of Energy). (1997). Energy and Environmental Profile of the
1435	U.S. Aluminum Industry. Washington, DC, USA: US DOE, Office of Industrial
1436	Technologies. 114 pp.
1437	https://www1.eere.energy.gov/manufacturing/resources/aluminum/pdfs/aluminu
1438	m.pdf
1439	Vainer, C. B., Vieira, F. B., de Sousa Monte, F. S., Nuti, M. R., & de Mattos Viana, R.
1440	(2009). Extraído o conceito de atingido: Uma revisão do debate e diretrizes. In:
1441	Santos, S. M., & Hernandez, F. M. (Eds.) Painel de Especialistas: Análise
1442	Crítica do Estudo de Impacto Ambiental do Aproveitamento Hidrelétrico de
1443	Belo Monte. Belém, Pará, Brazil: Painel de Especialistas sobre a Hidrelétrica de
1444	Belo Monte. pp. 213-230.
1445	http://www.internationalrivers.org/files/Belo%20Monte%20pareceres%20IBAM
1446	A_online%20(3).pdf
1447	Vale. (2004). Albras Compra Energia por 20 Anos. Vale, May 4, 2004.
1448	http://www.vale.com/PT/investors/home-press-releases/Press-
1449	Releases/Paginas/albras-compra-energia-por-20-anos.aspx
1450	Veja. (2013). Custo da usina de Belo Monte já supera os R\$ 30 bilhões. Veja, May 12,
1451	2013. http://veja.abril.com.br/noticia/economia/custo-da-usina-de-belo-monte-
1452	ja-supera-os-r-30-bilhoes/
1453	WCD (World Commission on Dams). (2000). Dams and Development: A New
1454	Framework for Decision Making. London, UK: Earthscan, 404 pp.
1455	http://www.dams.org/index.php?option=com_content&view=article&id=49&Ite
1456	mid=29
1457	Weber-Fahr, M. (2002). Treasure or Trouble? Mining in Developing Countries.
1458	Washington, DC, U.S.A.: World Bank, & International Finance Corporation, 22
1459	pp.
1460	http://siteresources.worldbank.org/INTOGMC/Resources/treasureortrouble.pdf
1461	Weisser, S. C. (2001). Investigation of the History of Mercury Contamination in the
1462	Balbina Reservoir, Amazon, Brazil. Masters thesis in environmental toxicology,
1463	Konstanz, Germany: Universität Konstanz. 66 pp.
1464	Wiziack, J. (2012). Governo vai acelerar usinas nos vizinhos para garantir energia.
1465	Folha de São Paulo, February 14, 2012, p B-1.
1466	World Bank. (2003). Accountability at the World Bank: Inspection Panel 10 Years on.
1467	Washington, DC, U.S.A.: The World Bank. 181 pp.
1468	http://siteresources.worldbank.org/EXTINSPECTIONPANEL/Resources/TenYe
1469	ar8_07.pdf
1470	Xingu Vivo. (2011). Belo Monte não cumpre regras, diz Ibama. Xingu Vivo, May 11,
1471	2011. http://www.xinguvivo.org.br/2011/05/11/belo-monte-nao-cumpre-regras-
1472	diz-ibama/
1473	Zampier, D. (2010). Mais da metade das doações da campanha de Dilma vieram de 41
1474	empresas. Agência Brasil, November 30, 2010.
1475	http://agenciabrasil.ebc.com.br/noticia/2010-12-01/mais-da-metade-das-

- 1476 doacoes-da-campanha-de-dilma-vieram-de-41-empresas
- 1477 Zhouri, A. (Ed.). (2011). As Tensões do Lugar: Hidrelétricas, Sujeitos e Licenciamento ambiental. Belo Horizonte, Minas Gerais, Brazil: Editora UFMG. 327 pp.

1479

1480

1481 Figure legends

Fig.1. Existing dams and dams in the planning or construction phases in Brazil's Legal
Amazon region. The numbers of the existing dams (dams with their reservoirs filled by
February 2014 indicated by circles) correspond to the numbers listed in Table 1, and the
numbers of the dams that are planned or under construction (indicated by triangles)
correspond to the numbers listed in Table 2. Adapted from: Fearnside (2014c).

1488

Fig. 2. Locations mentioned in the text. 1. Itaipu Dam, 2. Manso Dam, 3. Jirau Dam,
4.Santo Antônio Dam, 5. Samuel Dam, 6. Balbina Dam, 7. Petit-Saut Dam, 8. CuruáUna Dam,9. Belo Monte Dam, 10. Babaquara (Altamira) Dam, 11. Tucuruí Dam, 12.
Marabá Dam, 13. Serra Quebrada Dam, 14. Santa Isabel Dam, 15. Estreito Dam, 16.
Serra da Mesa Dam. Circles represent dams; triangles represent cities.

1494 1495

1497

1496 Acknowledgments

The author's research is supported exclusively by academic sources: Conselho Nacional
do Desenvolvimento Científico e Tecnológico (CNPq: Proc. 305880/2007-1;
304020/2010-9; 573810/2008-7; 575853/2008-5) and Instituto Nacional de Pesquisas da
Amazônia (INPA: PRJ13.03). Figure 1 and Tables 1 and 2 are translated and adapted
from Fearnside (2014c). PMLA Graça and three anonymous reviewers contributed
valuable comments.

1504

15051506 Highlights

1507

1509

1511

1508 Decisions on dams ignore the high impact and low benefit of aluminum exports.

1510 Were impacts given appropriate weight, policies on dams and exports would change.

1512 Dams impact global warming, local populations, indigenous peoples and biodiversity.

- 1513
- 1514 Electricity is the principal input for aluminum smelting.

No. in Fig. 1	Year filled	Name	State	River	Installed capacity (MW)	Area of reservoir (km ²)	Coordinates
1	1975	Coaracy-Nunes	Amapá	Araguari	78 [298 MW by 2016]	23 (for initial 78 MW)	00°54'24" N; 51°15'31" W
2	1977	Curuá-Una	Pará	Curuá-Una	100	78 (for initial 40 MW)	02°49'11.49" S; 54°17'59.64" W
3	1984	Tucuruí	Pará	Tocantins	8370	2850	03°49′54″ S; 49°38′48″ W
4	1987	Balbina	Amazonas	Uatumã	250	2996	01°55′02″ S; 59°28′25″ W
5	1987	Manso	Mato Grosso	Manso	212	427	14°52'16" S; 55°47'08" W
6	1988	Samuel	Rondônia	Jamari	210	560	08°45'1" S; 63°27'20" W
7	1999	Lajeado (Luis Eduardo Magalhães)	Tocantins	Tocantins	800	630	09°45'26" S; 48°22'17" W
8	2006	Peixe Angical	Tocantins	Tocantins	452	294	12°15'02" S; 48°22'54" W
9	2011	Dardanelos	Mato Grosso	Aripuanã	261	0.24	10°09'37" S; 59°26'55" W
10	2011	Santo Antônio (Madeira)	Rondônia	Madeira	3150 by 2015	350	08°48'04.0" S; 63°56'59.8" W
11	2011	Rondon II	Rondônia	Comemoração	73.5	23	11°58'51" S; 60°41'56" W
12	2012	Estreito (Tocantins)	Maranhão/ Tocantins	Tocantins	1087	744.68	06°35'11" S; 47°27'27" W
13	2013	Jirau	Rondônia	Madeira	3750 by 2015	361.6	09°15'17.96" S; 64° 38' 40.13" W
38	2014	Santo Antonio do Jari	Pará/Amapá	Jari	167	31.7	00°39' S; 52°31' W
46	2014	Teles Pires	Mato Grosso	Teles Pires	1819	151.8	09°20'35" S; 56°46'35" W

*Dams > 30 MW with reservoirs filled by May 2015.

Table 2 – Dams under construction and planned in Brazil's Legal Amazon	region (Updated from: Fearnside, 2014c).

No. in Fig. 1	Name ^a	State	River	Installed Capacity (MW)	Reservoir area (km²)	Status	Expected year of completion	Coordinates
14	Água Limpa	Mato Grosso	Das Mortes	320	17.9	Planned	2020	20'53" S; 53°25'49" W
15	Babaquara [Altamira]	Pará	Xingu	6,300	6,140	Officially unmentioned		03°18'00" S; 52°12'30" W
16	Belo Monte	Pará	Xingu	11,233	516	Under construction	2016	03°6′57″ S; 51°47′45″ W
17	Bem Querer	Roraima	Rio Branco	708	559.1	Planned	2022	01°52'40" N; 61°01'57" W
18	Cachoeira Caldeirão	Amapá	Araguari	219	48	Planned	2017	00°51.2'00" N; 51°12'00" W
19	Cachoeira do Caí	Pará	Jamanxim	802	420	Planned	2020	05°05'05" S; 56°28'05" W
20	Cachoeira dos Patos	Pará	Jamanxim	528	117	Planned		05°54'59" S; 55°45'36" W
21	Cachoeirão	Mato Grosso	Juruena	64	2.6	Planned		12°59'22" S; 58°57'29" W
22	Chacorão	Pará	Tapajós	3,336	616	Officially unmentioned		06°30'08" S; 58°18'53" W
23	Colíder	Mato Grosso	Teles Pires	300	171.7	Under construction	2015	10°59'5.9" S; 55°45'57.6" W
24	Couto Magalhães	Mato Grosso/Goiás	Araguaia	150	900	Planned		18°12'35" S; 53°3'06" W
25	Ferreira Gomes	Amapá	Araguari	252	17.72	Preliminary license	2015	00°51'20.126" N; 51°11′41.071" W
26	Foz do Apiacás	Mato Grosso	Apiacás	45	89.6	Planned	2018	09°12'23" S; 57°05'11" W
27	Ipueiras	Tocantins	Tocantins	480	933.5	Planned		11°15'11" S; 48°28'53" W
28	Jamanxim	Pará	Jamanxim	881	75	Planned	2020	05°38'48" S; 55°52'38" W
29	Jardim de Ouro	Pará	Jamanxim	227	426	Planned		06°15'49" S; 55°45'53" W
30	Jatobá	Pará	Tapajós	2,338	646	Planned	2021	05°11'48" S; 56°55'11" W
31	Juruena	Mato Grosso	Juruena	46	1.9	Planned		13°24'05'' S; 59°00'27''W
32	Marabá	Pará	Tocantins	2,160	1,115.4	Planned	2021	05°19' S; 49°04' W
33	Magessi	Mato Grosso	Teles Pires	53		Planned		13°34'35" S; 55°15'54" W,
34	Novo Acordo	Tocantins	Sono/Tocantins	160		Planned		09°58'25" S; 47°38'23" W
35	Ribeiro Gonçalves	Maranhão /Piauí	Paranaíba	113	238	Planned	2018	07 °34'31"'S; 45°19'02"W
36	Salto Augusto Baixo	Mato Grosso	Juruena	1,464	107	Planned	2021	08°53'6.3" S; 58°33'30.1" W

[JRN-234b]

37	Santa Isabel (Araguaia)	Pará	Araguaia	1,080	236	Planned		06°08' 00" S; 48°20' 00" W
38	Santo Antonio do Jari	Pará/Amapá	Jari	370	31.7	Now filled, see Table 1	2014	00°39' S; 52°31' W
39	São Luiz do Tapajós	Pará	Tapajós	8,040	722	Planned	2020	04°34'10" S; 56°47'06" S
40	São Manoel	Mato Grosso	Teles Pires	700	53	Planned	2018	09°11'29"S; 057°02'60"W
41	São Salvador	Tocantins/Goiás	Tocantins	243.2	99.65	Under construction		12°48'45" S; 48°15'29" W
42	Serra Quebrada	Maranhão	Tocantins	1,328	420	Preliminary license	2020	05°41'52" S; 47°29'11" W
43	Simão Alba [JRN-117a]	Mato Grosso	Juruena	3,509	> 1,000	Planned	2021	08°13'33.5" S; 58°19'23.9" W
44	Sinop	Mato Grosso	Teles Pires	400	329.6	Preliminary license	2018	11°16'10" S; 55°27'07" W
45	Tabajara	Rondônia	Ji-Paraná	350		Planned	2021	08°54'15" S; 62°10'21" W
46	Teles Pires	Mato Grosso	Teles Pires	1,819	151.8	Now filled, see Table 1	2015	09°20'35" S; 56°46'35" W
47	Tocantins [Renascer]	Tocantins	Tocantins	480	700	Planned		16°47'10" S; 47°56'31" W
48	Toricoejo	Mato Grosso	Das Mortes	76	48	Preliminary license		15°14'05" S; 53°06'57" W
49	Torixoréu	Mato Grosso/ Goiás	Araguaia	408	900	Preliminary license	2023	16°16'59" S; 52°37'00" W
50	Tupirantins	Tocantins	Tocantins	620	370	Planned		08°10'59" S; 48°10'00" W
51	Uruçuí	Maranhão /Piauí	Paranaíba	164	279	Preliminary license		07°14'08" S; 44°34'01" W
Not shown	Castanheira	Mato Grosso	Arinos	192			2021	
Not shown	Arrais	Tocantins	Palma	70			2022	
Not shown	Prainha	Amazonas	Aripuanã	408			2022	
Not shown	Paredão A	Roraima	Mucujaí	199			2023	

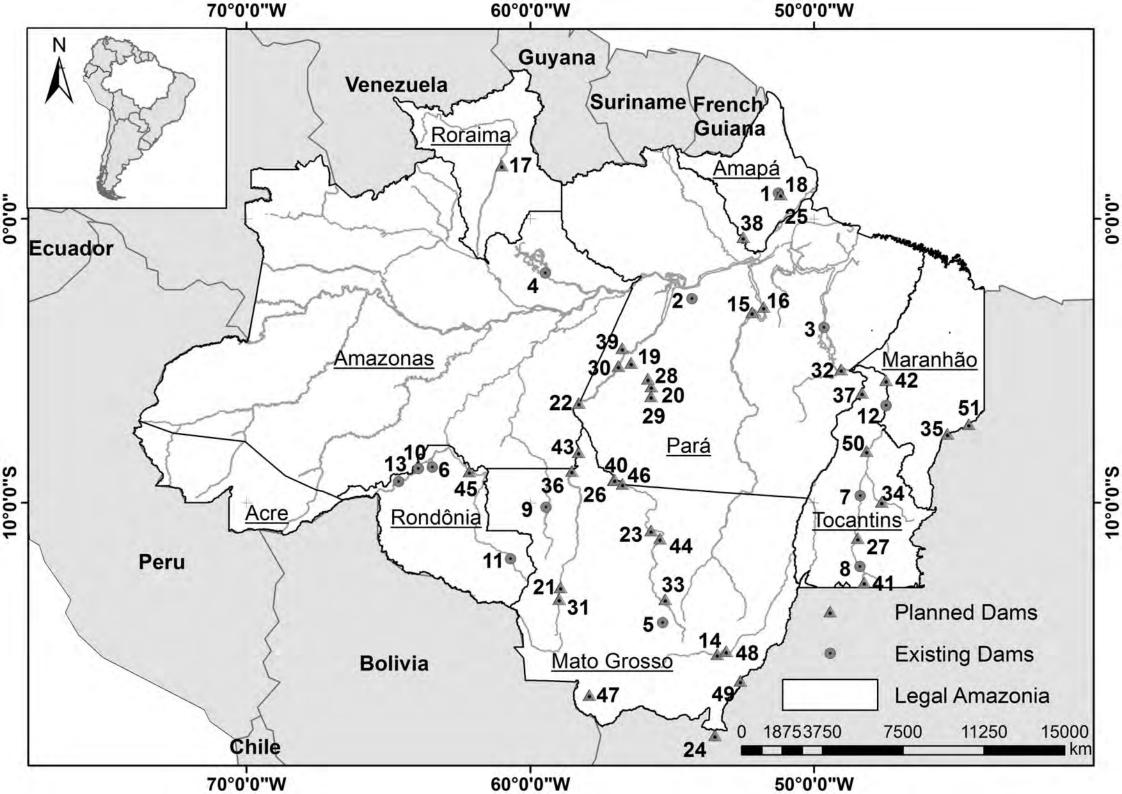
^aDams included in Brazil's 2014-2023 Energy Expansion Plan are: Santo Antônio do Jari [now filled], Belo Monte, Colíder, Ferreira Gomes, Teles Pires [now filled], Sinop, Cachoeira Caldeirão, São Manoel, São Luiz do Tapajós, Jatobá, Bem Querer, Paredão A, Arrais, Castanheira and Tabajara. The last four are recent additions to the priority list. Dams that had been scheduled for construction by 2021 that have now been postponed beyond 2023 are: Ribero Gonçalves, Água Lima, Simão Alba, Marabá and Salto Augusto Baixo (Brazil, MME, 2012, pp. 77-78). Dams that have postponed from previous plans but are scheduled for completion by 2023 are: Belo Monte, Bem Querer, Foz de Apiacás, Jatobá, São Luiz do Tapajós, São Manoel and Sinop. Several dams have had their installed capacities increased, most notably São Luiz do Tapajós from 6133 to 8040 MW.

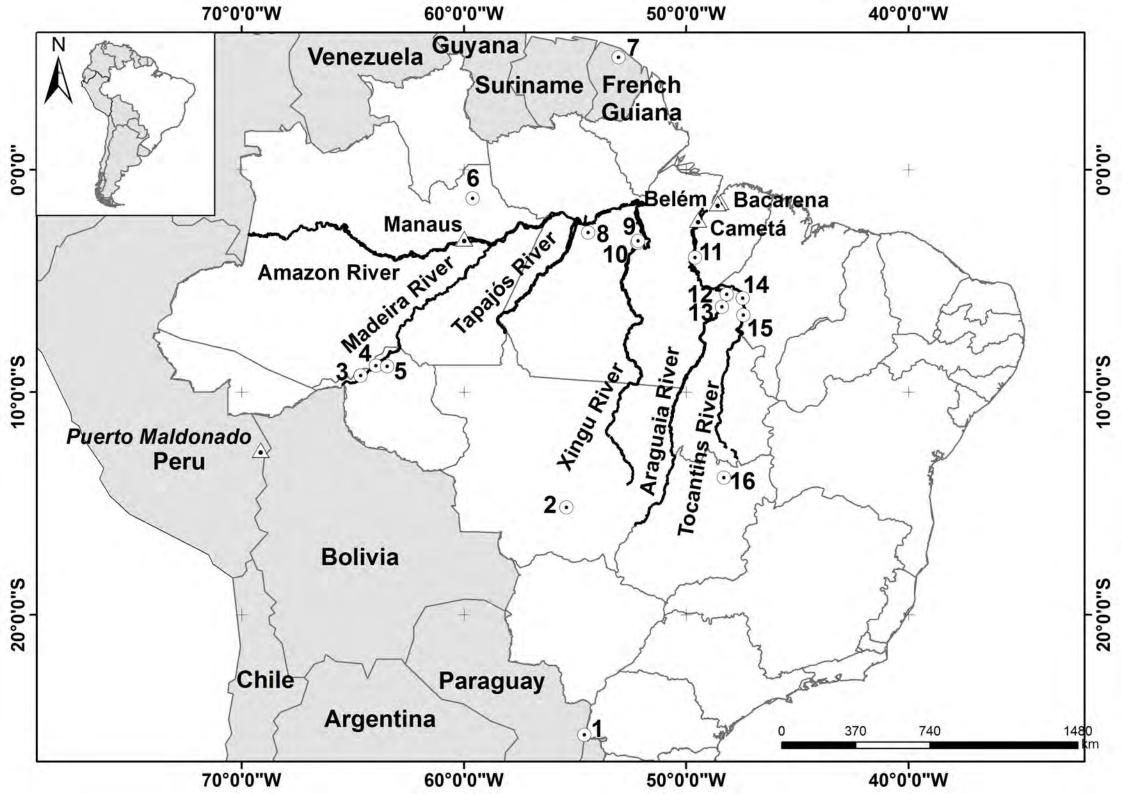
Table 3. Dams for autoproduction of aluminum in Brazilian Amazonia

No in	Dam	Rjver	Status	Affected	Comment
Fig. 1				people*	
12	Estreito	Tocantins	Existing	5,937	Partially for
					autoproduction
42	Serra Quebrada	Tocantins	Planned	14,000	
37	Santa Isabel	Araguaia	Planned	2,378	

*Source: International Rivers (2012).

	Production Weight	Imports Weight	Consumption Weight			Exports		
	(1000 t)	(1000 t)	(1000 t)	Weight (1000 t)	Value (US\$ million)	Price (US\$/t)	Percent of exported weight	Percent of Exported value
Untransformed metal								
Ingots	1,304.3	50.3		404.8	789.9	1,951.00	76.4	55.4
Alloys		79.5		15.1	34.7	2,292.71	2.9	2.4
Scrap	470.7	39.3		8.1	15.2	1,879.66	1.5	1.1
Subtotal	1,775.0	169.1	12.6	428.0	839.7	1,961.73	80.8	58.9
Semi-manufactured products ^(b)								
Sheets	542.9	78.5	579.7	42.3	125.9	2,977.75	8.0	8.8
Cables and rods	140	2.8	134.8	6.7	16.3	2,433.01	1.3	1.1
Foil	87.2	22.2	93.8	16.3	64.4	3,940.05	3.1	4.5
Subtotal	770.1	103.6	808.3	65.3	206.6	3,162.60	12.3	14.5
Manufactured products								
Extruded products	357.8	17.3	367.5	7.2	51.6	7,209.96	1.4	3.6
Powder	33.8	0.4	34.0	0.2	0.7	4,416.56	0.03	0.05
Household products	42.0	5.4	40.8	6.5	52.3	7,986.96	1.2	3.7
Castings	223.9		230.9	9.6	173.8	18,032.71	1.8	12.2
Other	25.3	31.4	31.0	13.0	100.5	7,755.43	2.4	7.1
Subtotal	682.8	54.5	704.2	36.5	378.9	10,391.42	6.9	26.6


Table 4. Aluminum in Brazil in 2013^(a)


Destructive uses		40.8	40.8						
Totals		(c)	332.9 1512.5 (d)	529.9	1,425.2	2,689.37	100.0	100.0	
	(a) Source: ABAL, 2014(b) Production deduced f	4	op. 13 & 30), imports (p. 2 tion, exports and imports.	21), exports	(p. 27), const	umption (p. 30)			
			ed, since products in the se nanufactured category are		•	•			

(d) This is the consumption total given by ABAL, representing the sum of the subtotals for semi-manufactured and manufactured products. However, this probably includes some double counting because some manufactured products are made from semi-manufactured products.

Table 5. Hydropower as "clean" energy in the view of the Brazilian Association of Aluminum (ABAL) on the Belo Monte Dam.

ABAL claim	Problem
Dams in	The FURNAS refers to dams outside of Amazonia: the study was done on the Manso
FURNAS	and Serra da Mesa Dams in the cerrado (Central Brazilian savanna) biome, where dams
study have	have lower emissions than in rainforest areas. Belo Monte and the great majority of
low carbon	planned dams are in Amazonia (Brazil, MME, 2012, pp. 77-78).
emissions.	
Dams 6-10	The age of six to ten years mentioned by the president of ABAL in referring to the dams
years old have	in the FURNAS study is significant because hydropower produces a huge peak of
low emission	emission in the first few years – a debt that can take decades to pay off as the electricity
	generated gradually offsets emissions from thermoelectric plants. The implication of the
	ABAL statement is that this debt is simply forgiven by only comparing the
	instantaneous balance in year six or ten.
"Reservoir"	"Reservoir" emissions refer to those from the surface of the water impounded behind
emissions are	the dam. The FURNAS study alluded to by ABAL used a methodology that did not
low	measure most of the methane being released by water passing through the turbines.
	This water is the main source of methane emission (e.g., Abril et al., 2005). The
	FURNAS study (Ometto et al., 2011, 2013) measured downstream methane fluxes using
	chambers floating on the water surface some distance below the outlet to the turbines (at
	least 50 m downstream). Unfortunately, much of the methane comes out of the water
	immediately at the outlet or even inside the turbines themselves. The only practical way
	to quantify the emission at the turbines is by the difference between the methane
	concentration in the water above the dam (at the depth of the turbines) and below the
	dam.
Dams have	"Carbon" is not the issue, but rather the impact on global warming. A ton of carbon in
low "carbon"	the form of methane (CH ₄) emitted by a dam has much more impact than a ton of
emissions as	carbon in the form of carbon dioxide (CO ₂) emitted by fossil fuels. Considering the
compared to	global-warming potential (GWP) of 25 for methane gas (Forster et al., 2007) adopted by
thermal power	the Clean Development Mechanism for the 2013-2017 period, meaning that each ton of
	methane gas has the impact of 25 tons of CO_2 gas over a 100-year period, then each ton
	of carbon emitted to the atmosphere as methane has the impact of 9.1 tons of carbon as
	CO ₂ . If one considers feedbacks, the most recent report of the Intergovernmental Panel
	on Climate Change (IPCC) calculates the 100-year GWP of CH ₄ as 34 (Myhre et al., 2012)
	2013), meaning each ton of methane carbon has 12.4 times the impact of a ton of CO_2
	carbon. The same IPCC report also calculates a GWP of 86 for a 20-year time horizon
	that is more relevant to preventing global mean temperature increase from passing the
	2°C limit now agreed as "dangerous," making each ton of carbon 31.3 times as potent if
	in the form of CH ₄ .

Supplementary Online Material:

Environmental and Social Impacts of Hydroelectric Dams in Brazilian Amazonia: Implications for the Aluminum Industry

Downstream impacts

Downstream impacts are considerable even when dams do not create a "dry stretch" by diverting water flow to a new route, but rather have the more-common design where the water is released at a powerhouse located directly below the dam. The water passing through the turbines is drawn from near the bottom of the reservoir at a depth where the water contains almost no oxygen (Fearnside, 2002). Depending on factors such as the entry of significant tributary streams, water often must flow for great distances below a dam before it regains the amount of oxygen that would be found in the natural river (e.g., Gosse et al., 2005; Kemenes et al., 2007). The water without oxygen kills many fish and keeps others from entering the river from below, as in the case of fish ascending Amazon tributaries (de Almeida-Val et al., 2006). The consequence for the livelihoods of downstream residents is dramatic, and these impacts are completely unrecognized and uncompensated in existing dams. The Tucuruí Dam provides a clear example. In Cametá, the largest of five riverside towns on the lower Tocantins River (180 km downstream of Tucuruí), the fish catch fell by 82% and the freshwater shrimp catch fell by 65% between 1985 and 1987 (Odinetz-Collart, 1987; see Fearnside, 2001). Fish landings in Cametá, which were 4726 t/year in 1985 (Odinetz-Collart, 1987), continued to decline, stabilizing at an average of 284 t/year for the 2001-2006 period (Cintra, 2009, p. 97), or a loss of 94%. Just the loss of fish in Cametá is greater than the entire mean fish catch of 4078 t/year in the Tucuruí reservoir over the 2001-2006 period (Cintra, 2009, p. 97). Most of the fishing fleet at Cametá simply disappeared after the river was dammed. The same occurred with the fishing fleet at São Sebastião do Uatumã, over 200 km below the Balbina Dam (see Fearnside, 1989).

The flood pulse on undammed Amazonian rivers is an essential feature of almost all aspects of natural *várzea* (floodplain) ecosystems, as well as the agriculture that depends on annual renewal of soil fertility by sediments deposited by the floods (e.g., Junk, 1997). This pulse is also essential for nutrient inputs to *várzea* lakes, where many species of fish breed (including commercially important species). Reducing this pulse is a concern, for example, for *várzea* lakes along the Madeira River downstream of the Santo Antônio and Jirau Dams. The river below these dams (which began generating power in 2011 and 2013, respectively) was not considered to be part of the area of influence for environmental impacts (FURNAS et al., 2005).

Upstream impacts

Impacts upstream of hydroelectric reservoirs also include raising river levels in what is known as the "backwater stretch" (*remanso superior*). When a river enters a reservoir at its upstream end, the speed of the water flow immediately drops to a much slower rate, causing sediment in the water to sink to the bottom. Large particles such as sand settle to the bottom of the reservoir immediately, while fine silt settles near the

dam at the lower end of the reservoir (Morris & Fan, 1998). This is especially important in a river like the Madeira, which has one of the highest sediment loads in the world (Meade, 1994). The large deposit at the upper end of the reservoir forms a mound that acts like a second dam holding back the water upstream and raising the water level in the backwater stretch—outside of what is officially considered to be part of the reservoir. This is critical in the case of the Madeira dams because the reservoir of the Jirau Dam officially extends exactly to the border with Bolivia, but the backwater stretch would flood land in Bolivia, including part of a conservation unit (Molina Carpio, 2005). The backwater stretch was not included in the environmental impact studies (EIA-RIMA) for the Madeira dams (FURNAS et al., 2005). In the flood of 2014 the presence of the Jirau Reservoir cause a 1-m additional increase in the water level at the border, thus causing flooding in Bolivia in the backwater stretch (Vauchel, 2014).

Mercury

Gold mining in the reservoir catchment area can also be a potential source of mercury, as in the case of the Serra Pelada mining area upstream of Tucuruí. Transport to the reservoir is mainly by water rather than through the atmosphere, and mercury is estimated to be accumulating in the Tucuruí reservoir at a rate of 235 kg year⁻¹ (Aula et al., 1995).

Soil erosion in deforested areas carries organic matter and associated mercury into Amazonian rivers, increasing mercury levels in sediments (Roulet et al., 2000). Atmospheric deposition includes contributions from industrial sources around the world, including the burning of coal (Zhang et al., 2002), as well as from biomass burning in Amazonia (Veiga et al., 1994).

Sediments at the bottom of a reservoir are without oxygen and provide an ideal environment for methylation of mercury, or adding a methyl (CH₃) group to metallic mercury (Hg) (Huguet et al., 2010). This is what renders it highly poisonous (Tsubaki & Takahashi, 1986). Chemically, the process is similar to methanogenesis, or formation of methane (CH₄), which also occurs under the same anoxic conditions (Kelly et al., 1997). When a reservoir is flooded, in the first few years there is a large flush of bacterial methylation of accumulated mercury that is associated with soil organic matter; this has been observed throughout temperate and, especially, boreal zones (Joslin, 1994; Rosenberg et al., 1995). Following this initial peak, long-term accumulation in fish can be sustained by more modest rates of methylation in plankton (St. Louis et al., 2004) and biofilms (Huguet et al., 2010). Although contamination levels vary depending on water chemistry and other factors at each site, observations in Brazilian reservoirs indicate that this is also a general problem in tropical areas. In terms of human impact, favorability of sites for methylation often overshadows the importance of large stocks of metallic mercury: areas without gold mining can have high contamination in humans since amounts found in samples of fish and human hair vary in accord with water chemistry, rivers with low pH and high dissolved organic carbon having highest levels (Silva-Forsberg et al., 1999).

Mercury lies dormant in the soil in a harmless form, but the situation changes immediately when soil is flooded by a reservoir (e.g., Joslin, 1994). Mercury concentrates in fish, with the amount increasing with each step in the food chain, for example by 2-4 fold per trophic level in Tucuruí (Porvari, 1995). Tucunaré (*Cichla ocellaris* and *C. temensis*), a predator, is the dominant fish species in Amazonian reservoirs and has been found to have mercury levels that greatly exceed international health standards for human consumption in the cases of Tucurui (Porvari, 1995; Santos et

al., 2001) and Samuel (Malm et al., 1995). Humans are the next step in the food chain. At Tucuruí, lakeside residents consuming fish had higher mercury levels than those of gold miners in the Amazonian *garimpos* that are notorious for mercury contamination (Leino & Lodenius, 1995). Cytogenetic damage and a variety of motor deficiencies and reduced lateral vision, which are the first symptoms of Minamata disease (mercury poisoning), have been measured in Amazonian riverside populations (Amorim et al., 2000; Lebel et al., 1998). The primary factor keeping mercury contamination from having a more widespread impact in Brazil is low fish production of reservoirs (e.g., Cintra, 2009; Junk & de Mello, 1990). Contamination is therefore largely concentrated in local populations near the reservoirs, far from the country's centers of political power (see Fearnside, 1999, 2005a). While the environmental-justice issue this implies should add to the weight of negative factors in dam-building decisions, in practice the spatial distribution of impacts makes them easier for decision makers to ignore.

Dam cascades

Various indications strongly suggest that the investors in Belo Monte (and key government officials in the electrical sector) have no intention of following the CNPE policy. The lack of economic viability of Belo Monte without upstream dams is believed to be the key to a "planned crisis," where the need for more water would suddenly be "discovered" after Belo Monte is built, thus providing justification for approval of the other dams (de Sousa Júnior & Reid, 2010; de Sousa Júnior et al., 2006). The water shortage would be aggravated further by changes in the Xingu River's flow due to continued deforestation in the watershed (Panday et al., 2015; Stickler et al., 2013) and due to projected climate change (Kemenes et al., 2012). Another indication that the official scenario is fiction is that when Marina Silva, as Minister of the Environment, proposed creation of an extractive reserve in part of the area to be flooded by the upstream dams, the proposal was blocked by Dilma Rousseff [Brazil's current president] when she was head of the Civil House on the grounds that it would hinder dam construction upstream of Belo Monte (Angelo, 2010). As president, she has called for future dams to have "large reservoirs" rather than run-of-river designs, although without making an explicit reference to the Xingu River (Borges, 2013). The dams that were planned upstream of Belo Monte from 1975 to 2008 would flood vast areas of indigenous land, almost all of it under tropical rainforest (see Fearnside, 2006). None of this was considered in the EIA-RIMA completed in 2009 (Brazil, ELETROBRÁS, 2009), and was also excluded from the earlier version prepared in 2002 (Brazil, ELETRONORTE, nd [2002]).

Two major river systems are expected to have cascades of dams for a different reason: rather than to store water for generating electricity at downstream dams, the dams would have to go forward as a complete set in order to convert the rivers into navigable waterways known as "*hidrovias*." This applies to the four Madeira River Dams (two of which have been built so far) that would open 4000 km of waterways in Bolivia plus the Guaporé waterway that would connect the Madeira River to soy areas in Mato Grosso (Fearnside, 2014a). The other case is the Tapajós River Dams in Pará, including those on the Teles Pires and the Juruena Rivers (two tributaries in Mato Grosso) (Fearnside, 2015a). The planned waterways would carry soybeans to ports on the Amazon River (Brazil, MT, 2010). In the Madeira and Tapajós cases some (but not all) of the dams are "run-of-river" projects that depend on the natural flow of the river rather than on releasing stored water. The Tocantins/Araguaia Dams, which also are part of a planned waterway, are storage dams.

References

- Amorim, M. J. M., Mergler, D., Bahia, M. O., Dubeau, H., Miranda, D., Lebel, J., Lucotte, M. (2000). Cytogenetic damage related to low levels of methyl mercury contamination in the Brazilian Amazon. *Anais da Academia Brasileira de Ciências*, 72, 497-507.
- Angelo, C. (2010). PT tenta apagar fama 'antiverde' de Dilma. *Folha de São Paulo*, October 10, 2010, p. A-15.
- Aula, I., Braunschweiler, H., & Malin, I. (1995). The watershed flux of Mercury examined with indicators in the Tucurui reservoir in Para, Brazil. Science of the Total Environment 175:97-107
- Borges, A. (2013). Dilma defende usinas hidrelétricas com grandes reservatórios. *Valor Econômico*, June 6, 2013.
 - http://www.valor.com.br/imprimir/noticia_impresso/3151684
- Brazil, ELETROBRÁS (Centrais Elétricas Brasileiras S/A). (2009). Aproveitamento Hidrelétrico Belo Monte: Estudo de Impacto Ambiental. Fevereiro de 2009. Rio de Janeiro, RJ, Brazil: ELETROBRÁS. 36 vols.
- Brazil, ELETRONORTE (Centrais Elétricas do Norte do Brasil, S.A.). (nd [2002]). Complexo Hidrelétrico Belo Monte: Estudo de Impacto Ambiental- EIA. Versão preliminar. Brasília, DF, Brazil: ELETRONORTE, 6 vols.
- Brazil, MT (Ministério dos Transportes). (2010). Diretrizes da Política Nacional de Transporte Hidroviário. Brasília, DF, Brazil: MT, Secretaria de Política Nacional de Transportes, 33 pp.

http://www2.transportes.gov.br/Modal/Hidroviario/PNHidroviario.pdf

- Cintra, I. H. A. (2009). A Pesca no Reservatório da Usina Hidrelétrica de Tucuruí, Estado do Pará, Brasil. PhD thesis in fisheries engineering, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil. 190 pp. http://www.pgengpesca.ufc.br/index.php?option=com_content&view=article&id =19&Itemid=32
- de Almeida-Val, V. M. F., Gomes, A. R. C., & Lopes, N. P. (2006). Metabolic and physiological adjustments to low oxygen and high temperature in fishes of the Amazon. Val, A.L., de Almeida-Val, & V.M.F., Randall, D.J. (Eds.) *Fish Physiology: The Physiology of Tropical Fishes*. (pp. 443-500). San Diego, CA, USA: Elsevier.
- de Sousa Júnior, W. C., & Reid, J. (2010). Uncertainties in Amazon hydropower development: Risk scenarios and environmental issues around the Belo Monte dam. *Water Alternatives*, 3, 249-268.
- de Sousa Júnior, W. C., Reid, J., & Leitão, N. C. S. (2006). *Custos e Benefícios do Complexo Hidrelétrico Belo Monte: Uma Abordagem Econômico-Ambiental.* Lagoa Santa, MG, Brazil. Conservation Strategy Fund (CSF), 90 pp. http://www.conservation-strategy.org/en/publication/custos-ebenef%C3% ADcios-do-complexo-hidrel%C3% A9trico-belo-monte-umaabordagem-econ%C3%B4mico-ambienta
- Fearnside, P. M. (1989). Brazil's Balbina Dam: Environment versus the legacy of the pharaohs in Amazonia. *Environmental Management*, 13, 401-423. doi: 10.1007/BF01867675

- Fearnside, P. M. (2001). Environmental impacts of Brazil's Tucuruí Dam: Unlearned lessons for hydroelectric development in Amazonia. *Environmental Management*, 27, 377-396. doi: 10.1007/s002670010156
- Fearnside, P. M. (2002). Greenhouse gas emissions from a hydroelectric reservoir (Brazil's Tucuruí Dam) and the energy policy implications. *Water, Air and Soil Pollution*, 133, 69-96. doi: 10.1023/A:1012971715668
- Fearnside, P. M. (2006). Dams in the Amazon: Belo Monte and Brazil's hydroelectric development of the Xingu River Basin. *Environmental Management*, 38, 16-27. doi: 10.1007/s00267-005-00113-6
- Fearnside, P. M. (2014a). Impacts of Brazil's Madeira River dams: Unlearned lessons for hydroelectric development in Amazonia. *Environmental Science & Policy*, 38, 164-172. doi: 10.1016/j.envsci.2013.11.004
- Fearnside, P. M. (2014c). Análisis de los Principales Proyectos Hidro-Energéticos en la Región Amazónica. Lima, Peru: Derecho, Ambiente y Recursos Naturales (DAR), Centro Latinoamericano de Ecología Social (CLAES), & Panel Internacional de Ambiente y Energia en la Amazonia. 55 pp. http://www.dar.org.pe/archivos/publicacion/147 Proyecto hidro-energeticos.pdf
- FURNAS (FURNAS Centrais Elétricas S.A.), CNO (Construtora Noberto Odebrecht, S.A.), & Leme Engenharia. (2005). EIA- Estudo de Impacto Ambiental Aproveitamentos Hidrelétricos Santo Antônio e Jirau, Rio Madeira-RO. 6315-RT-G90-001. Rio de Janeiro, RJ, Brazil: FURNAS, CNO, & Leme Engenharia, 8 Vols. Irregular Pagination. http://www.amazonia.org.br/arquivos/195010.zip
- Gosse, P., Abril, G., Guérin, F., Richard, S., & Delmas, R. (2005). Evolution and relationships of greenhouse gases and dissolved oxygen during 1994-2003 in a river downstream of a tropical reservoir. *Verhandlungen Internationale Vereinigung fur Theoretische und Angewandte Limnologie*, 29, 594-600.
- Huguet, L., Castelle, S., Schäfer, J., Blanc, G., Maury-Brachet, R., Reynouard, C., & Jorand, F. (2010). Mercury methylation rates of biofilm and plankton microorganisms from a hydroelectric reservoir in French Guiana. *Science of the Total Environment*, 408, 1338-1348. doi: 10.1016/j.scitotenv.2009.10.058
- Joslin, J. D. (1994). Regional differences in mercury levels in aquatic ecosystems: A discussion of possible causal factors with implications for the Tennessee River System and the Northern Hemisphere. *Environmental Management*, 18, 559-567.
- Junk, W. J. (Ed.) (1997). *The Central Amazon Floodplain Ecology of a Pulsing System*. Heidelberg, Germany: Springer-Verlag, 525 pp.
- Junk, W. J., & de Mello, J. A. S. N. (1990). Impactos ecológicos das represas hidrelétricas na bacia amazônica brasileira. *Estudos Avançados*, 4(8), 126-143. doi: 10.1590/S0103-40141990000100010
- Kelly, C. A., Rudd, J. W. M., Bodaly, R. A., Roulet, N. P., St. Louis, V. L., Heyes, A., Edwards, G. (1997). Increases in fluxes of greenhouse gases and methyl mercury following flooding of an experimental reservoir. *Environmental Science* and Technology, 31, 1334–1344. doi: 10.1021/es9604931
- Kemenes, A., dos Santos, C. A. C., & Satyamurty, P. (2012). Mudança do clima e geração de energia. *Ciência Hoje*, 50(295), 37-41.
- Kemenes, A., Forsberg, B. R., & Melack, J. M. (2007). Methane release below a tropical hydroelectric dam. *Geophysical Research Letters*, 34, L12809. doi: 10.1029/2007GL029479. 55

- Lebel, J., Mergler, D., Branches, F., Lucotte, M., Amorim, M., Larribe, F., & Dolbec, J. (1998). Neurotoxic effects of low-level methylmercury contamination in the Amazonian Basin. *Environmental Research*, 79, 20-32.
- Leino, T., & Lodenius, M. (1995). Human hair mercury levels in Tucuruí area, state of Pará, Brazil. *Science of the Total Environment*, 175, 119-125.
- Malm, O., Castro, M. B., Bastos, W. R., Branches, F. J. P., Guimarães, J. R. D., Zuffo, C. E., & Pfeiffer, W. C. (1995). An assessment of mercury pollution in different goldmining areas, Amazon Brazil. *Science of the Total Environment*, 175, 127-140.
- Meade, R. H. (1994). Suspended sediments of the modern Amazon and Orinoco Rivers. *Quaternary International*, 21, 29-39.
- Molina Carpio, J. (2005). El megaproyecto hidroeléctrico y de navegación del Río Madera. In: *Geopolítica de los Recursos Naturales e Acuerdos Comerciales en Sudamerica*. (pp. 101-116). La Paz, Bolivia: Foro Boliviano sobre Medio Ambiente y Desarrollo (FOBOMADE). http://www.fobomade.org.bo/publicaciones/docs/8.pdf
- Morris, G. L., & Fan, J. (1998). Reservoir Sedimentation Handbook: Design and Management of Dams, Reservoirs, and Watersheds for Sustainable Use. New York, USA: McGraw-Hill. 848 pp.
- Odinetz-Collart, O. (1987). La pêche crevettiere de Macrobrachium amazonicum (Palaemonidae) dans le Bas-Tocantins, après la fermeture du barrage de Tucuruí (Brésil). *Revue d'Hidrobiologie Tropical*, 20, 131-144.
- Panday, P. K., Coe, M. T., Macedo, M. N., Lefebvre, P., & Castanho, A. D. A. (2015). Deforestation offsets water balance changes due to climate variability in the Xingu River in eastern Amazonia. *Journal of Hydrology*, 523, 822-829. doi: 10.1016/j.jhydrol.2015.02.018
- Porvari, P. (1995). Mercury levels of fish in Tucuruí hydroelectric reservoir and river Mojú in Amazonian, in the state of Pará, Brazil. Science of the Total Environment, 175, 109-117.
- Roulet, M., Lucotte, M., Canuel, R., Farella, N., Courcelles, M., Guimarães, J.-R. D., Amorim, M. (2000). Increase in mercury contamination recorded in lacustrine sediments following deforestation in central Amazon. *Chemical Geology*, 165, 243-266.
- Santos, H. S. B., Malm, O., & Kehrig, H. A. (2001). Mercury contamination in *Cichla temensis* (tucunaré) from Tucuruí Reservoir, Brazilian Amazon. In: 6th International Conference on Mercury as a Global Pollutant (ICMGP). Oct. 15-19, 2001, Minamata, Japan. (p. 136.) Minamata, Japan: ICMGP.
- Silva-Forsberg, M. C., Forsberg, B. R., & Zeidemann, V. (1999). Mercury contamination in humans linked to river chemistry. *Ambio*, 28, 519-521.
- St. Louis, V. L., Rudd. J. W. M., Kelly, C. A., Bodaly, R. A., Paterson, M. J., Beaty, K. G., Majewski, A. R. (2004). The rise and fall of mercury methylation in an experimental reservoir. *Environmental Science and Technology*, 38, 1348–1358. doi: 10.1021/es034424f
- Stickler, C. M., Coe, M. T., Costa, M. H., Nepstad, D. C., McGrath, D. G., Diasc, L. C., Soares-Filho, B. S. (2013). The dependence of hydropower energy generation on forests in the Amazon Basin at local and regional scales. *Proceedings of the National Academy of Sciences USA*, 110(23), 9601-9606. doi: 10.1073/pnas.1215331110

- Tsubaki, T., & Takahashi, H. (Eds.). (1986). *Recent Advances in Minamata Disease Studies: Methylmercury Poisoning in Minamata and Niigata, Japan*. Tokyo, Japan: Kodansha, Ltda. 214 pp.
- Vauchel, P. (2014). Estudio de la crecida 2014 en la cuenca del rio Madera. La Paz, Bolivia: Observatoire de Recherche en Environnement – Control Geodinámico, Hidrológico y Bioquímico de la Erosión/Alteración y las Transferencias de Materia en la Cuenca del Amazonas (ORE-HyBAm), Institut de Recherche pour le Développment (IRD). 25 pp. http://www.orehybam.org/index.php/eng/content/download/17209/89238/file/Estudio%20de%2 Ola%20crecida%202014%20en%20la%20cuenca%20del%20rio%20Madera.pdf
- Veiga, M. M., Meech, J. A., & Onate, N. (1994). Mercury pollution from deforestation. *Nature*, 368, 816-817.
- Zhang, M. Q., Zhu, Y. C. &, Deng, R. W. (2002). Evaluation of mercury emissions to the atmosphere from coal combustion, China. *Ambio*, 31, 482-484. doi: http://dx.doi.org/10.1579/0044-7447-31.6.482