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Title: Soil charcoal as long-term pyrogenic carbon storage in Amazonian seasonal forests 1 

 2 

Abstract 3 

Forest fires (paleo + modern) have caused charcoal particles to accumulate in the soil vertical 4 
profile in Amazonia. This forest compartment is a long-term carbon reservoir with an 5 
important role in global carbon balance. Estimates of stocks remain uncertain in forests that 6 
have not been altered by deforestation but that have been impacted by understory fires and 7 
selective logging. We estimated the stock of pyrogenic carbon derived from charcoal 8 

accumulated in the soil profile of seasonal forest fragments impacted by fire and selective 9 
logging in the northern portion of Brazilian Amazonia. Sixty-nine soil cores to 1-m depth 10 

were collected in 12 forest fragments of different sizes. Charcoal stocks averaged 3.45±2.17 11 
Mg ha-1 (2.24±1.41 Mg C ha-1). Pyrogenic carbon was not directly related to the size of the 12 
forest fragments. This carbon is equivalent to 1.40% (0.25% to 4.04%) of the carbon stocked 13 
in aboveground live tree biomass in these fragments. The vertical distribution of pyrogenic 14 
carbon indicates an exponential model, where the 0-30 cm depth range has 60% of the total 15 

stored. The total area of Brazil’s Amazonian seasonal forests and ecotones not altered by 16 
deforestation implies 65-286 Tg of pyrogenic carbon accumulated along the soil vertical 17 
profile. This is 1.2-2.3 times the total amount of residual pyrogenic carbon formed by biomass 18 
burning worldwide in one year. Our analysis suggests that the accumulated charcoal in the 19 

soil vertical profile in Amazonian forests is a substantial pyrogenic carbon pool that needs to 20 
be considered in global carbon models. 21 

 22 
Keywords: Soil charcoal, Carbon sequestration, Forest islands, Global carbon cycle, Charcoal 23 

stocks.  24 
 25 

Introduction  26 
 27 

Charcoal stored in terrestrial soils represents one of the ways by which carbon is 28 

positioned in the environment in relatively inert form and hence acts as a long-term reservoir 29 
because it does not easily recombine with the oxygen to form CO2 (Druffel, 2004, Fearnside 30 
et al., 2001, Schmidt, 2004, Seiler & Crutzen, 1980). The charcoal is also transferred to ocean 31 

sediments by processes of erosion and river transport, adding to another long-term carbon 32 

pool (Suman, 1984). This charcoal is derived from incomplete pyrolysis of biomass and it is 33 

characterized by a high concentration of carbon and high resistance to natural degradation 34 

processes (Foereid et al., 2011, Forbes et al., 2006, Kuhlbusch & Crutzen, 1995). 35 

Despite their importance as a “missing carbon sink”, these deposits are not counted in the 36 

IPCC Guidelines for the balance of global emissions and sinks of atmospheric CO2 (IPCC, 37 
2006, Lehmann et al., 2006, Santin et al., 2015). This omission is mainly because of 38 
uncertainty stemming from high variability in the spatial distribution and in the nature of 39 
biomass exposed to fire in different ecosystems (Glaser et al., 2002, Preston & Schmidt, 40 
2006, Simpson & Hatcher, 2004). Environmental conditions (e.g., soil, vegetation type and 41 

climate) are also determinants affecting the frequency of surface soil charcoal formation, 42 

consumption of charcoal in subsequent fires and the quality of the charcoal formed (Bird et 43 

al., 2015). Irregularity in charcoal deposition rates directly influences vertical accumulation 44 

and spatial distribution of pyrogenic carbon (Forbes et al., 2006, IPCC, 2006).   45 

In contrast to studies in temperate and boreal regions (DeLuca & Aplet, 2008, Licata & 46 
Sanford, 2012), uncertainty regarding charcoal in the Amazon lies mainly in the fact that most 47 
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studies involving charcoal distribution in the soil profile were designed to answer other 48 
questions: (i) paleo-environmental dynamics (Cordeiro et al., 2014, Meneses et al., 2013, 49 
Toledo & Bush, 2007), (ii) arqueological evidence for indigenous land uses (Levis et al., 50 
2012), (iii) formation of anthropogenic black soils (Glaser et al., 2002, Lehmann et al., 2003, 51 

Roosevelt, 2013) and (iv) soil charcoal formation by clearing and biomass burning associated 52 
with deforestation (Fearnside et al., 2007, Graça et al., 1999). However, the Brazilian 53 
Amazon still has a vast area of intact forests (> 3.0 × 106 km2 not disturbed by recent 54 
deforestation), where realistic estimates of carbon stocks in different compartments are 55 
needed to improve understanding of the region’s role in regulating global climate (Nogueira et 56 

al., 2015, Saatchi et al., 2007).  57 

In general, charcoal dispersed along the soil vertical profile under forests that have not 58 
been perturbed by recent deforestation comes from biomass burning following two process: 59 
(i)  paleo-fires that occurred throughout the Holocene in Amazonia (Meggers, 1994, 60 

Saldarriaga & West, 1986, Sanford et al., 1985) associated with human disturbances and/or 61 
climatic anomalies (Bassini & Becker, 1990, Hermanowski et al., 2015, Santos et al., 2000) 62 
and, (ii) modern forest fires in the post-1970 period, where severe droughts and feedbacks 63 
associated with forest selective logging increase risk of understory fires (Laurance & 64 
Williamson, 2001, Morton et al., 2013, Nepstad et al., 2004). Charcoal formed by paleo-fires 65 

is relatively stable in the deeper soil layers, while modern forest fires have an additive effect 66 

on pyrogenic carbon in the surface layers. This effect is most dramatic in the set of seasonal 67 
forests and ecotones that represent much of the forest area in the southern and northern “arcs 68 
of deforestation” in  Amazonia (Barni et al., 2015, Brazil-INPE, 2013, Fearnside et al., 2009). 69 

Since these forest types have often been subjected to selective logging  and are very sensitive 70 
to severe droughts, there is a higher incidence of forest fires in these regions (Alencar et al., 71 

2015, Aragão et al., 2008, Brienen et al., 2015). In this case, the charcoal formed will depend 72 
on the size of the affected area and on the degree of  impact of selective logging on forest 73 

structure, as these factors determine the amount of necromass exposed to fire (Alencar et al., 74 
2011, Barbosa & Fearnside, 1999). Estimates of charcoal stock in these forests reduce 75 

uncertainty and improve understanding of carbon sources and sinks in Amazonia. 76 

The aim of this study was to estimate the carbon stock derived from soil charcoal 77 
accumulated in the vertical profile of seasonal forests affected by fire and selective logging in 78 

the Brazilian Amazon’s northern “arc of deforestation.” These remnants are natural 79 

paleoclimatic forest fragments that have a history of both Holocene fires (Desjardins et al., 80 

1996) and modern forest fires (Santos et al., 2013), which can provide important clues to the 81 
spatial and vertical variability of charcoal carbon deposits (fossil + modern). Our objectives 82 

were to (i) determine charcoal carbon stocks using the size of forest fragments as a spatial 83 
predictor and (ii) determine the pattern of distribution of charcoal carbon along the soil 84 
vertical profile. The results extend knowledge of pyrogenic carbon stocks in Amazonia and 85 

provide information for inclusion of this forest compartment in national estimates of 86 

greenhouse-gas emissions. 87 

Materials and Methods 88 
 89 

Study Area 90 

The study was conducted in the Nova Amazônia I Settlement Project (PANA-I) in an 91 

area of ~440 km2 located ~35 km northwest of the city of Boa Vista, capital of the state of 92 
Roraima (Fig. 1). This area is situated in the ecotone zone of forest-savanna of the Branco 93 
River-Rupununi River region, on the border with Venezuela and Guyana (Barbosa et al., 94 
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2007, Huber et al., 2006). We mapped 34 remnants (forest fragments or forest islands) of 95 
semideciduous seasonal forests with paleoclimatic origin. The fragments were naturally 96 
dispersed over a landscape with low relief and altitude (~90 m a.s.l.). Forest fragments in the 97 
forest-savanna ecotone in Roraima have been exposed to frequent impact of selective logging 98 

and understory forest fire but have been relatively resilient in maintaining their size despite 99 
constant disturbances (Couto-Santos et al., 2014). Fabaceae and Sapotaceae are the most 100 
abundant plant families in these fragments, while Pouteria surumuensis Baehni (Sapotaceae), 101 

the main tree species, is a pioneer (Jaramillo, 2015, Santos et al., 2013). 102 

All forest fragments in this region are on Oxisol with sandy clay-loam texture, moderate 103 
acidity, low fertility and organic matter content generally decreasing with increasing depth 104 

(Fig. S1, Supplementary Material). Data from the Brazilian National Institute of Meteorology 105 
(INMET) station for the city of Boa Vista indicate that the driest months are between 106 
December and March, annual rainfall varies from 1500 to1700 mm and average annual 107 

temperature is 27.8 ± 0.6 °C; all of these values are consistent with the Aw climate according 108 

to the Köppen classification (Barbosa et al., 2012). 109 

 110 

Experimental Design 111 

Twelve fragments (sample units or sample sites) were randomly sampled. In each 112 

fragment, two or three equidistant transects were laid out in the north-south direction, where 113 
soil samples (subsamples) were collected with a "bipartite root auger" (Eijkelkamp, Giesbeek, 114 

The Netherlands). The sampler is a cylindrical tube 8 cm in diameter. Each core was taken 115 
from a profile to 100 cm depth, divided into six intervals (0-10, 10-20, 20-30, 30-40, 40-50 116 

and 90-100 cm). The subsamples were arranged equidistantly along the transects in order to 117 
capture the variability in charcoal stocks between the edges and the interior of each fragment. 118 

Using several subsamples rather than a single soil core has been found to be a suitable tool for 119 
describing the spatial and vertical distribution of soil charcoal at each sample site (McMichael 120 
et al., 2012). Fire (paleo + modern) produces charcoal that is randomly and non-uniformly 121 

dispersed (Sanford & Horn, 2000). A single core for a sample site would, therefore, be 122 
inadequate for estimating soil-carbon stocks. In total, 69 soil cores (each divided into six 123 

depth ranges) were collected in the12 forest fragments between December 2013 and February 124 

2014, which is the dry period in this region (Table S1, Supplementary Material).  125 

 126 

Charcoal Triage 127 

Various direct and indirect methods exist for quantifying the different fractions of 128 
charcoal particles (Buma et al., 2014, Hammes et al., 2007, Skjernstad et al., 1999). We 129 
adopted a direct method to quantify macroscopic charcoal particles (≥ 1 mm in diameter), 130 

which were manually collected in each 10-cm depth interval. Coarse particles (≥ 2 mm in 131 
diameter) were directly separated from the air-dried (24 h) soil by sieving, while smaller 132 
particles (≥ 1 mm and <2 mm) were collected by the flotation method. The flotation method 133 
(Carcaillet, 2001) consisted of placing air-dried soil in a recipient with water to collect the 134 

floating charcoal pieces. Smaller particles (<1 mm) were discarded. Pieces of soil charcoal 135 
saturated with water were considered to be insignificant because soil samples were collected 136 
in the regional dry period. Voucher specimens of the soil samples were deposited at the 137 

National Institute for Research in Amazonia base in Boa Vista, Roraima (INPA-NPRR). 138 

Finally, all collected pieces were dried in an electric oven (± 102 °C) to constant weight. 139 
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 140 

Data Transformation 141 

Charcoal quantities was converted to mass per unit area (Mg ha-1) for each depth range 142 

(0-10, 10-20, 20-30, 30-40, 40-50 and 90-100 cm). All values were adjusted for soil bulk 143 
density along the 1-m vertical profile, as suggested by Carcaillet & Talon (2001). Bulk 144 
density was estimated by Feitosa (2009) using a horizontal collection of undeformed samples 145 
obtained by the Kopecky Method (EMBRAPA, (1997) (Fig. S2, Supplementary Material). 146 
The charcoal mass in each depth interval not sampled directly (50-60, 60-70, 70-80 and 80-90 147 

cm) was estimated indirectly using the exponential regression model with the highest 148 
coefficient of determination (R2) for each forest fragment. We used the final range of 90-100 149 

cm as a proxy to calibrate the curve of the models obtained in each fragment following an 150 
exponential decay pattern similar to that observed for micro charcoal flux in lake sediments in 151 
Roraima (Cordeiro et al., 2014). Finally, charcoal stock for each forest fragment was 152 

calculated as an arithmetic mean of the set of sub-samples for each depth interval. 153 

To transform charcoal mass values (Mg ha-1) into pyrogenic carbon stock (Mg C ha-1) 154 
we used the average carbon concentration of 64.95% estimated for charcoal pieces formed by 155 

biomass burning in the ecotone of Roraima (Barbosa & Fearnside, 1996). After this 156 
procedure, a single regression model for the carbon stock derived from charcoal mass was 157 

derived in order to determine the general vertical distribution pattern for the 1-m profile. 158 

 159 

Data Analysis 160 

The data set was subjected to normality tests. Pyrogenic carbon stock (dependent 161 

variable) was related to the area of each forest fragment (independent variable) for the 162 
purpose of checking general spatial patterns of carbon deposits on the basis of the current size 163 

of these fragments. The relation between total pyrogenic carbon stock (to 1-m depth) and the 164 
aboveground live biomass of trees with diameter at breast height (DBH) ≥ 10 cm was 165 
calculated as a percentage. Tree biomass in each fragment was obtained from Jaramillo 166 

(2015). Carbon concentration in live tree biomass was considered to be 48.5% (Silva, 2007). 167 
The purpose of this calculation was to create a reference value for seasonal forests affected by 168 

fire and selective logging, which is easy to integrate into general models of carbon flux, as 169 
suggested by Forbes et al. (2006). Finally, a one-way analysis of variance (ANOVA0.05; 170 

Bartlett’s test0.05) was used to verify differences in the means and variances of the carbon 171 
stocks along the soil vertical profile of all fragments (vertical variability). All analyses were 172 
performed with R software (R Core Team, 2014). 173 

 174 
Results 175 

 176 

Charcoal and Pyrogenic Carbon  177 
 178 

All forest fragments (sample units) contained charcoal particles along the soil vertical 179 

profile to 1-m depth, indicating that fire (paleo + modern) disturbances have been relatively 180 
recurrent in these seasonal ecosystems. Only nine sub-samples (13%) contained no carbon 181 
particles (≥ 1 mm) along the soil vertical profile. There were no particles larger than 15 mm in 182 
diameter in any of the sub-samples assessed. Estimated soil charcoal stock considering all 183 

fragments analyzed was 3.45±2.17 Mg ha-1 while pyrogenic carbon (2.24±1.41 Mg C ha-1) 184 
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was equivalent to 1.40% (range 0.25% to 4.04%) of the carbon stock in aboveground live 185 
biomass of trees with DBH ≥ 10 cm (Table 1). High variability was found among the charcoal 186 
stocks in the 12 forest fragments (Bartlett's test0.05, p <0.0001). Forest-fragment size was a 187 
weak predictor of pyrogenic carbon stock due to high variability within each fragment (Fig. 188 

2). 189 

 190 

Vertical Variability 191 
 192 
Estimates of carbon stock in soil charcoal differed along the vertical profile (one-way 193 

ANOVA; F0.05 = 4.1719; p < 0.0001), with the largest single carbon concentration (26.5%) 194 

occurring in the 10-20 cm range (Fig. 3a,b; Table S2 in Supplementary Material). The first 195 
soil layers (0-30 cm) held 60.5% of the total carbon stock while the deepest layer (90-100 cm) 196 
held the lowest percentage (4.2%). The distribution of pyrogenic carbon along the soil vertical 197 

profile was calculated as an exponential decay pattern with high heterogeneity of variances in 198 
the values observed at different depths (Bartlett’s test0.05, p < 0.00001). The general decay 199 
pattern for pyrogenic carbon followed the model below: 200 

 201 

Y = 0.5299 × e-0.022 × X  (R² = 0.8618)  202 

Where Y = pyrogenic carbon stock (Mg C ha-1) and X = midpoint of the depth interval (cm).  203 

 204 

Discussion  205 

 206 

The soil charcoal stock observed along the 1-m profile shows that incidence of fires 207 
(paleo + modern) over space and time have been determining the accumulation of pyrogenic 208 

carbon in seasonal forest soils in this area of the Amazon region. Values for charcoal stocks 209 
found under these forest fragments in Roraima (range 0.79-7.22 Mg ha-1) are close to the 210 
means found under forests near San Carlos de Rio Negro, Venezuela (4.6-13.9 Mg ha-1) 211 

(Sanford et al., 1985). Although our values do not include small charcoal particles (<1 mm in 212 
diameter) along the soil vertical profile, and therefore can be considered as conservative, their 213 

order of magnitude indicates that this forest compartment cannot be neglected in regional 214 

estimates of carbon stocks and flows. 215 

Pyrogenic carbon stock (range 0.46-4.69 Mg C ha-1) found along the soil vertical profile 216 

is also of the same order of magnitude as charcoal carbon formed by modern biomass burning 217 
following deforestation at a variety of locations throughout Brazilian Amazonia (1.6-6.0 Mg 218 
C ha-1) (Fearnside et al., 1999, Fearnside et al., 2001, Graça et al., 1999, Righi et al., 2009). 219 
In this case, pyrogenic carbon represents 2.2% of the total carbon affected by fire, but, since it 220 
is derived from burning primary forests for agricultural purposes, the larger amounts of 221 

necromass exposed to fire make combustion more intense (Fearnside, 2002). This reference 222 
value for deforestation in primary forests should not be confused with the soil pyrogenic 223 
carbon stocks (1-m depth) for forests that were not recently cleared but have been impacted 224 

by understory fires and selective logging in the modern period (e.g., 1.40% of the 225 
aboveground live carbon in trees in this study). Modern accumulation contributes a smaller 226 
amount (0.01-0.26 Mg C ha-1 for each understory fire) and is regulated by different processes 227 
and rates of charcoal formation and consumption (Barbosa & Fearnside, 1999). Therefore, our 228 

value for pyrogenic carbon stock represents a substantial fossilized charcoal deposit, in 229 
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addition to the smaller quantity of pyrogenic carbon produced in the modern age and 230 

infrequently deposited in the topsoil. 231 

The values given here show that accumulation of pyrogenic carbon (fossil + modern) in 232 
this type of forest is not related to the area of the forest fragments but indicates high spatial 233 
variability among their individual carbon stocks. This is suggested as a pattern for tropical 234 
soils indicating that the history of paleo-fires and the availability and distribution of biomass 235 

exposed to fire are the most important factors (Bird et al., 2015, Power et al., 2008, Titiz & 236 
Sanford Jr., 2007). These factors are also consistent with what has been observed in 237 
uncontrolled savanna fires in the areas adjacent to the fragments we studied in Roraima. 238 
Modern uncontrolled fires in the Roraima savanna are frequent, of low intensity and occur at 239 

random (Barbosa & Fearnside, 2005), spreading in the understory of the forest fragments and 240 
producing soil charcoal at different temporal and spatial scales. This charcoal source is in 241 
addition to that from sporadic deforestation of small portions of the fragments for subsistence 242 

farming (both modern and ancient). However, independent of the mix of processes (paleo-243 
fires, swidden agriculture and modern understory fires), the soil charcoal formed may be 244 
considered as a proportion of the biomass affected by fire in the depositional environment 245 
(Power et al., 2008). We therefore suggest using the reference range (0.25% to 4.04% of 246 
aboveground carbon in live trees) to estimate pyrogenic carbon stocks in the soil vertical 247 

profile (1-m depth) under seasonal forests with a history of Holocene fires and with frequent 248 

impacts from selective logging and understory fires. Although uncertainties are still 249 
substantial, aboveground carbon in live trees is easiest to estimate and provides a realistic 250 
alternative basis for estimation that avoids subjective values that are far from the reality of 251 

observed carbon stocks. 252 

Differences in the distribution charcoal deposits along the soil vertical profile are 253 
consistent with Amazonian paleoclimate studies in ecotone areas in Roraima (Cordeiro et al., 254 

2014, Desjardins et al., 1996), where the highest charcoal concentration was found in the 255 
layers closest to the soil surface. This is a relatively steady pattern in ecotones in the northern 256 
and southern “arcs of deforestation” in Brazilian Amazonia, and a relation of this pattern to 257 

modern climate stability has been suggested (Bush et al., 2008). On the other hand, the 258 
vertical model of soil charcoal distribution found in our study does not have the same decay 259 
pattern as that observed in other Amazon sites. For example, in forests in Guyana (Hammond 260 

et al., 2007) and in ombrophilous forest close to Manaus in central Amazonia (Piperno & 261 

Becker, 1996, Santos et al., 2000), soil charcoal presence was highest in intermediate layers 262 

(30-60 cm). These comparisons indicate that vertical patterns will vary in accord with 263 
regional historical factors such as fire frequency, climate change, bio-pedoturbation and land 264 

use at each location. Therefore, the vertical decay model (to 1-m depth) described in this 265 
study cannot be considered to be a standard for the whole of Amazonia, but it indicates that 266 
the distribution of charcoal deposits in the soil profile of the seasonal forest studied supports 267 

the largest concentration of pyrogenic carbon in the layers closest to the surface. 268 

Based on our results, we conclude that carbon stocks (fossil + modern) derived from 269 
soil charcoal in seasonal forest fragments affected by fires and selective logging in Brazil’s 270 

state of Roraima show high spatial variability and an exponential decay pattern with depth in 271 

the soil profile. The largest pyrogenic carbon concentrations are associated with the layers 272 

closest to the surface. Our results imply that the remaining area of seasonal forests and 273 
ecotones that have not been altered by deforestation in Brazilian Amazonia as a whole (783.8 274 
× 103 km2: (FUNCATE, 2006) have a storage potential of 65-286 Tg of pyrogenic carbon to 275 
1-m depth. This is 1.2-2.3 times the total residual pyrogenic carbon produced by biomass 276 
burning worldwide in one year (56-123 Tg: Bird et al., 2015), indicating the order of 277 
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magnitude of this forest carbon compartment. Despite the uncertainty involved in estimates of 278 
this magnitude, our analysis suggests that the substantial amount of pyrogenic carbon found in 279 
Amazon forest soils must be considered a matter of priority for incorporation into global 280 
carbon models. 281 

 282 
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FIGURE CAPTIONS 

 

Figure 1. Study area location indicating the boundaries of PANA-I and the spatial 

distribution of the sampled forest fragments (black) in the state of Roraima, Brazil.  

 

Figure 2. Relationship between pyrogenic carbon stock (Mg C ha-1) and area (ha) of 

seasonal forest fragments in Roraima: Y = 1.76278 + 0.02254 × X (n = 12; F0.05 = 

1.114; p < 0.3161; R2 = 0.1002). 

 

Figure 3. Vertical distribution of (a) charcoal stocks and (b) pyrogenic carbon sampled 

in the soil profile (1-m depth) in forest fragments in the forest-savanna ecotone of 

Roraima. Box-plots indicate median values of the first and third quartiles, and bars 

indicate ranges (maximum and minimum) for data from the 12 sampling units divided 

among all 10-cm soil intervals in the profile to 1-m depth. Points outside the maximum 

and minimum interval bars represent outliers. Values for 50-90 cm depth were 

estimated by regression (charcoal stocks and pyrogenic carbon), assuming the observed 

exponential decay pattern. Soil charcoal outliers for 10-20 cm (39.34 Mg ha-1; fragment 

area = 1.25 ha) and 90-100 cm (9.19 Mg ha-1; fragment area = 44.68 ha) were 

normalized by the average of all values in their respective depth ranges. 
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 497 

Table 1. Charcoal, pyrogenic carbon and pyrogenic carbon fraction (1-m depth) as a function 498 
of carbon derived from the aboveground live biomass in trees with DBH ≥ 10 cm. Tree 499 
biomass was estimated by Jaramillo (2015). Carbon concentration in tree biomass assumed to 500 

be 48.5% (Silva, 2007). Standard deviation (SD) in parentheses. 501 

 502 

 

Sample 

unit 

Fragment 

area 

 

Tree 

biomass 

Tree 

carbon 

Soil 

charcoal 

Pyrogenic 

carbon 

Charcoal 

mass as % 

of tree 

biomass 

Charcoal 

carbon as % 

of tree 

carbon 

(ha) (Mg ha-1) (Mg ha-1) (Mg ha-1) (Mg ha-1) (%) (%) 

1 1.252 164.8 79.9 4.98 3.23 3.02 4.04 

2 2.693 257.4 124.8 2.29 1.49 0.89 1.19 

3 5.285 202.1 98.0 1.26 0.82 0.62 0.84 

4 7.307 201.3 97.6 1.69 1.10 0.84 1.13 

5 11.589 196.7 95.4 4.50 2.92 2.29 3.06 

6 11.641 432.0 209.5 2.94 1.91 0.68 0.91 

7 12.125 260.9 126.5 4.88 3.17 1.87 2.51 

8 15.798 376.9 182.8 0.79 0.46 0.21 0.25 

9 30.598 380.6 184.6 2.83 1.84 0.74 1.00 

10 44.685 540.7 262.2 7.22 4.69 1.34 1.79 

11 50.282 491.2 238.2 6.70 4.35 1.36 1.83 

12 57.230 447.7 217.1 1.33 0.86 0.30 0.40 

Mean         - 
329.4 159.7 

3.45 

(2.17) 

2.24 

(1.41) 

1.05 

(0.84) 

1.40 

(1.13) 
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Table S1- Geographical location, number of sub-samples and size of seasonal forest fragments 

(sampling units) in the savanna-forest ecotone of Roraima. 

 

Sample 

Unit 
Area (ha) Sub-samples 

Latitude 

(N) 

Longitude 

(W) 

1 1.25 2 03°06.06 60°55.60 

2 2.70 4 03°07.45 60°50.57 

3 5.28 4 03°00.60 60°53.09 

4 7.31 6 03°06.39 60°49.40 

5 11.59 8 03°08.15 60°50.60 

6 11.64 8 03°02.18 60°51.81 

7 12.12 6 03°13.25 60°49.57 

8 15.80 4 03°06.66 60°54.41 

9 30.60 8 03°06.56 60°53.23 

10 44.69 3 03°05.84 60°49.54 

11 50.28 8 03°05.32 60°55.41 

12 57.23 8 03°07.37 60°51.23 

Total 250.49 69 - - 
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Table S2. Pyrogenic carbon derived from soil charcoal found along the 1-m vertical profile in seasonal forest fragments of different 

sizes. Values in italics were estimated by regressions (exponential model) for each fragment individually. Numbers in bold are outliers 

that were normalized by the mean of all values for the respective depth ranges: 10-20 cm (39.34 Mg ha-1, fragment area = 1.252 ha) 

and 90-100 cm (9.19 Mg ha-1; fragment area = 44.685 ha). 

 

Fragment 

Size (ha) 
0-10 20-30 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100 

Total  

(Mg ha-1) 

1.252 0.4059 0.9790 0.4096 0.0281 0.0638 0.2211 0.2146 0.2083 0.2021 0.5024 3.23 

2.693 0.0532 0.0520 0.8431 0.2255 0.0450 0.0725 0.0630 0.0548 0.0476 0.0291 1.49 

5.285 0.0815 0.0984 0.0175 0.3509 0.0535 0.0545 0.0493 0.0446 0.0404 0.0296 0.82 

7.307 0.5203 0.1324 0.2713 0.0456 0.0221 0.0387 0.0262 0.0177 0.0120 0.0138 1.10 

11.589 0.0910 0.2915 0.6274 0.2777 0.6460 0.2381 0.2265 0.2155 0.2050 0.1029 2.92 

11.641 0.3368 1.3038 0.0396 0.1020 0.0292 0.0390 0.0248 0.0158 0.0101 0.0101 1.91 

12.125 0.9816 0.7926 0.9590 0.0306 0.2167 0.0800 0.0485 0.0294 0.0179 0.0130 3.17 

15.798 0.1869 0.1958 0.0751 0.0022 0.0000 0.0003 0.0001 0.00002 0.0000 0.000001 0.46 

30.598 0.3385 0.1024 0.1288 0.1355 0.6230 0.1343 0.1191 0.1057 0.0937 0.0547 1.84 

44.685 0.4933 0.7786 0.9882 0.8312 0.0796 0.3600 0.3193 0.2832 0.2512 0.3022 4.69 

50.282 0.5507 2.3129 0.2545 0.7858 0.0736 0.1398 0.0937 0.0628 0.0421 0.0337 4.35 

57.230 0.3834 0.0794 0.0922 0.0976 0.0168 0.0509 0.0412 0.0334 0.0271 0.0392 0.86 

Mean   

(Mg ha-1) 
0.37 0.59 0.39 0.24 0.16 0.12 0.10 0.09 0.08 0.09 2.24 
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Figure S1. Physical and chemical characteristics of soils of forest fragments dispersed in the 

savanna-forest contact zone in Roraima. Where: sand, clay and silt in (%); SOM = Soil Organic 

Matter (g kg-1), SB = Sum of Bases (cmolc dm-3) and Al+3 = Aluminum (cmolc dm-3). The gray 

dots are estimates to show the behavior of these properties along the 1-m depth soil profile. 

Vertical bars are standard deviation (SD). 
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Figure S2 – Estimation of soil bulk density (g cm-3) in the 1-m vertical profile observed in forest 

fragments dispersed in the savanna-forest ecotone of Roraima, northern Brazilian Amazon. 

Exponential model derived from data by Feitosa (2009): Y  = 1.2582 + 0.0437 × ln(X) (R² = 

0.9943); where Y = soil bulk density (g cm-3) and X = midpoint of the depth interval (cm). 
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Figure S2 – Estimation of soil bulk density (g cm-3) in the 1-m vertical profile observed in 19 
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