The text that follows is a PREPRINT.
O texto que segue é um PREPRINT.

Please cite as:
Favor citar como:

https://doi.org.10.1002/sd.1725

ISSN: 1099-1719

Copyright: John Wiley & Sons, Ltd.

The original publication is available at:
O trabalho original está disponível em:

https://doi.org.10.1002/sd.1725
Challenges for sustainable development in Brazilian Amazonia

Philip M Fearnside$^{1,2}$

$^1$National Institute for Research in Amazonia (INPA), Av. André Araújo, 2936, Manaus, Amazonas, CEP 69067-375, Brazil, pmfearn@inpa.gov.br

$^2$Brazilian Research Network on Climate Change (RedeClima), Brazil
Challenges for sustainable development in Brazilian Amazonia

ABSTRACT

Most economic initiatives and infrastructure projects in Brazilian Amazonia have social benefits that are small and ephemeral, while their socio-environmental impacts are severe. More sustainable forms of development are inhibited by barriers such as a decision-making system with heavy influence (including corruption) from actors with interests in non-sustainable activities. These interests have driven a recent surge of legislative threats to environmental licensing. Better alternatives exist for many destructive forms of “development” projects. Examples include transport using rivers (rather than building highways) and electricity generation from Brazil’s vast solar and wind resources (rather than hydroelectric dams). Traditional rural population could receive support from programs that tap the value of the Amazon forest’s environmental services, but institutional mechanisms are in their infancy, among challenges that include differing political interests of countries providing environmental services and those that might pay for them, lack of data, and a “theoretical battlefield” regarding accounting for benefits.

KEYWORDS: Deforestation, Environmental licensing, Environmental services, Global warming, Environmental impact assessment, Amazon
The challenges to sustainable development in Brazilian Amazonia can be divided into two broad categories: counteracting the forces that lead to unsustainable development and offering alternatives to the current economy that is almost entirely based on destruction of natural ecosystems. “Sustainable development” can be interpreted in various ways. At a minimum, in order to be “development” the actions undertaken must lead to an improvement in human wellbeing, presumably of the population at the location in question, and to be “sustainable” these benefits must last indefinitely (or at least for a very long time).

The present paper examines challenges to sustainable development in Brazilian Amazonia, but many of the challenges in this region are similar to those in other parts of the world, including Peru (Doleac, 2015; Erickson-Davis, 2016), Bolivia (Bottazzi and Dao, 2013; Muller et al., 2012a,b; Redo et al., 2011; Tejada et al., 2016), Ecuador (Mosandl et al., 2008; Tapia-Armijos et al., 2015), Indonesia (Busch et al., 2012; Fearnside, 1997a; Purnomo et al., 2017), Malaysia (Bryan et al., 2013; Miettinen et al., 2011) the Democratic Republic of Congo (Ickowitz et al., 2015; Wilkie et al., 2000) and Papua New Guinea (Filer et al., 2009; Shearman et al., 2009).

FORCES IMPEDING SUSTAINABLE DEVELOPMENT

Counteracting unsustainable development, including land-use changes such as deforestation for extensive cattle pasture that can hardly be called “development” (Fearnside, 1997b), must begin with the reforming the decision-making process. Decision making currently leads to government priority on building highways, dams and other large infrastructure projects that destroy ecosystems both directly and by the economic transformations and population migrations they promote. These government decisions do not, in practice, consider alternatives. Examples include the BR-319 (Manaus-Porto Velho) Highway and the many proposed dams in Amazonia (Figure).

It is relevant to note the revelation by Brazil’s Supreme Electoral Court (TSE) in 2013 that the four largest donors to political campaigns in Brazil in the preceding decade were construction firms that build dams and other infrastructure in Amazonia (Gama, 2013). The effect of political campaign contributions, both legal and illegal, became public knowledge in 2015 and 2016 with a series of confessions concerning bribes paid for contracts for building the Belo Monte Dam, both from the companies paying the bribes (Amazonas en Tempo, 2015a) and from the politicians on the receiving end (e.g., do Amaral, 2016). The construction firms paid 1% of the contract value as bribes, and these payments were critical to funding the 2010 and 2014 presidential campaigns of the victorious political party, according to the confession (released by federal courts) of the party leader in the Federal Senate (do Amaral, 2016). This provides a rationale for the extraordinary personal involvement of two Brazilian presidents (Luiz Inácio Lula da Silva and Dilma Vana Rousseff) in promoting the dam and pushing for approval of its licensing despite high socio-environmental and financial costs (see: Fearnside, 2017a,b).

The revelations regarding political campaign financing provide an explanation for the mystery of why the Brazilian government would so heavily subsidize a project...
with little chance of viability in strictly financial terms, even disregarding its social and environmental impacts. The over US$10 billion cost is 80% financed by Brazil’s National Bank of Economic and Social Development (BNDES) at 4% annual interest, while the federal government finances itself by selling bonds at 10% annual interest (e.g., Leitão, 2010). Because of the extended period of the year with low seasonal water flow in the Xingu River, the dam’s chance of financial viability is minuscule even assuming no future impacts of climate change (de Sousa Júnior and Reid, 2010; de Sousa Júnior et al., 2006; Fearnside, 2017b,c). Projected decrease in the Xingu River’s flow due to precipitation changes predicted to result from global warming (Ângelo and Feitosa, 2015; Sorribas et al., 2016) and altered seasonal distribution of flow due to deforestation (Stickler et al., 2013) make the outlook even more untenable as an investment.

The influence of money on environmentally destructive decisions was dramatically demonstrated by the votes in the National Congress in 2011 and 2012 on reforming (gutting) the country’s Forest Code (Law 12.651/2012: Brazil, PR, 2012). The initial vote in the Chamber of Deputies, which has representation proportional to population, was in a ratio of 7:1 against the environment, allowing more deforestation on steep hillsides and in gallery forests along rivers, and forgiving 43 years of violations of the previous Forest Code. Brazil’s scientific community had provided ample warning of the environmental consequences of the proposed revision, including a joint report by the Brazilian Society for the Progress of Science (SBPC) and the Brazilian Academy of Sciences (ABC) (da Silva et al., 2011), but this advice was ignored by the National Congress. Brazil’s population is 85% urban, and the fraction of the total with a financial stake in being allowed to deforest in these areas is miniscule. Opinion polls at the time showed 85% of Brazil’s population opposing any change in the Forest Code (Barrionuevo, 2012). The logical explanation for a 7:1 vote against the interests of the electorate lies in the financial power of agribusiness interests such as soy plantations and cattle ranches. The “ruralist block” that represents large landowners in the National Congress has continued to gain strength; Blairo Maggi, who became Brazil’s minister of agriculture on 12 May 2016, is the country’s largest soybean producer and was awarded the Greenpeace “golden chainsaw” when he was governor of the state of Mato Grosso (Greenpeace, 2005).

Weakening of environmental licensing in Brazil is a major barrier to counteracting forces for unsustainable development. In 2016 the National Congress produced an explosion of new legislative proposals (and of sudden accelerations of longstanding ones) to weaken or even effectively abolish the licensing system (Fearnside, 2016a). Proposed laws moving forward under “urgent” status (PLS-654/2015 in the Senate and PL-3.729/2004 in the Chamber of Deputies) would allow “strategic” projects (such as dams) to be licensed in a streamlined one-step process (Brazil, Câmara dos Deputados, 2004; Brazil, Senado Federal, 2016a). Approval by the Brazilian Institute of the Environment and Renewable Natural Resources (IBAMA) is demanded within deadlines that make adequate analysis impossible, after which the proposed projects are automatically approved. The proposed law in the Senate is led by Senator Romero Jucá, whose fortune stems from Amazonian gold mining and who has a long record of actions to diminish the rights of Amazonian indigenous peoples (Rocha, 2012). He is currently the leader of the largest political party in the Brazilian Senate.

The proposed law in the Chamber of Deputies is led by Deputy Mauro Pereira of the Parliamentary Front for Agriculture and Ranching (FPA, 2016).
A proposed constitutional amendment (PEC-65/2012), also progressing under “urgent” status, would make the mere submission of an EIA sufficient to allow major infrastructure projects such as dams and highways to go unstoppably forward to completion (Brazil, Senado Federal, 2016b). This proposal is particularly incongruous given the environmental-licensing failure behind the still ongoing disaster of a mine tailings dam breaking on 5 November 2015, destroying a town near Mariana, Minas Gerais and virtually all aquatic life on one of Brazil’s major rivers (Oliveira, 2016).

Many senators and federal deputies have given ample indications of their tendency to respond to influences promoting non-sustainable options in debates like this (Fearnside, 2015a). This proposed constitutional amendment was authored by Senator Acir Gurgacz, who, as the founder of a mining company in Rondônia and owner of the largest bus company plying Amazonian highways, is the second wealthiest member of the Senate (Infomoney, 2014). Constitutional amendments are very much more common in Brazil than, for example, in the United States. Amendments in Brazil require a 60% majority in two votes in both houses of the National Congress, after which they automatically take effect with no need for presidential sanction. Since coming into force in October 1988, Brazil’s current constitution had been amended 90 times by December 2015 (Lima, 2016).

A law passed in September 2016 (Law 13.334/2016, enacting proposal MPV 727) can achieve the same weakening of Brazil’s licensing system by another mechanism. This law, which established the Program for Partnerships for Investment (PPI), states (Article 17): “The agencies, entities and government authorities …. on which the viability of a PPI enterprise depends have the duty to act …. so that completion will [occur] on a time-schedule compatible with the national-priority character of the project [of] all processes and administrative acts necessary for [the project’s] structuring, release and execution. …. Release means obtaining any …. environmental, indigenous, …. and any other [type of] license necessary for the deployment and operation of the enterprise” (Brazil, PR, 2016). This means that the PPI Executive Board will have power over IBAMA, the National Foundation for the Indian (FUNAI), and all relevant state and municipal agencies, and that the Board is empowered to set deadlines and demand approval of any project regardless of impacts.

There is also a proposed constitutional amendment (PEC-215) that would transfer authority from the executive branch to the legislature for creating indigenous areas and conservation units (Brazil, Câmara dos Deputados, 2014). In practice, this would be the end of creating more of these areas, and this amendment is a top priority of the “ruralist block” (OEco, 2015). Indigenous lands would be opened to mining by PEC-210 and PL-1619/1996, which have long been dormant and now have emerged as legislative priorities (Fearnside, 2016a).

Licensing is also weakened by the increasing tendency to override the technical opinions of the licensing staff in IBAMA. Pending approval of the one-step system being considered in the National Congress, licensing is done in three steps: a preliminary license allowing preparations to begin, an installation license allowing the physical structure (such as a dam) to be built, and an operational license, allowing, for example, the reservoir behind a dam to be filled. In the case of the Madeira River dams, a 121-page formal opinion (parecer) by the technical staff recommending against approval of the preliminary license (Deberdt et al., 2007) was overruled by changing the
head of the licensing department; the replacement was then promoted to head IBAMA as a whole, in which capacity he overruled a 146-page technical opinion (Brazil, IBAMA, 2008) and approved the installation license (see Fearnside, 2014). In the case of the Belo Monte Dam, two technical opinions totaling 366 pages opposing the preliminary license (Brazil, IBAMA, 2009, 2010) were overruled by changing the head of the licensing department and the head (“president”) of IBAMA (Agência Brasil, 2011; Hurwitz, 2011). The installation license was approved overruling a 252-page technical opinion (Brazil, IBAMA, 2011) by changing the head of IBAMA again (Fearnside, 2012a). These precedents demoralize the technical staff and can be expected to increase the tendency to allow politically favored projects to pass without meeting requirements. An additional weakening is the practice of approving licensing steps with a list of “preconditions” (condicionantes) that are supposed to be satisfied before the next license in the sequence is granted. Preconditions have only been used since 2003 and are an increasingly common feature of the licensing process, allowing projects to move forward that would previously have been required to meet these demands before receiving the license. An even more drastic precedent has been set by Belo Monte in 2015, when the operating license was granted, overruling a 242-page opinion (Brazil, IBAMA, 2015), even though most of the 40 preconditions established by IBAMA had not been met (Villas-Bôas et al., 2015). This opens the door to any project being completed without satisfying IBAMA licensing demands.

July and August 2017 saw a spectacular series of blows to Brazil’s licensing system and other environmental protections in the days (and even hours) leading up to a vote in the Chamber of Deputies on a motion to authorize impeachment proceedings against president Michel Temer on the basis of corruption revelations (see sources referenced in Fearnside, 2017d). Among the setbacks were the president’s reneging on a promise to the environment minister regarding the administration’s coalition of political parties being obliged to oppose gutting the licensing system under PL-3.729/2004, signing Law 13.465 (formerly MP-759, known as the “land-thieves’ law” or “lei da grilagem”) that includes allowing “legalization” of illegal land claims of up to 2500 ha, effectively pardoning vast sums in fines and debts owed to the government by the agribusiness and ranching sectors, weakening criteria for definition of indigenous lands, support for a controversial highway demanded by ruralists, and measures to reduce Amazonian protected areas. These are in addition to handing out over R$ 4 billion (US$ 1.3 billion) in pork-barrel appropriations known as “emendas” to selected federal deputies, with estimates of future “emendas” as high as R$ 17 billion (US$ 5.2 billion), in addition to various other expensive concessions. Many of the beneficiaries were among the estimated 231 ruralist representatives in the 454-member Chamber of Deputies. The ruralist block alone is more than sufficient to prevent reaching the two-thirds majority required to begin impeachment proceedings. In the midst of Brazil’s economic “crisis,” the cost of the pork-barrel “emendas” translates into a significant addition to the expenditure cutbacks that are already hampering inspection and enforcement by the Environment Ministry. The impeachment motion was defeated on 2 August 2017, a result for which ruralist votes were critical.

A serious barrier to effective licensing is the existence of “security suspension” laws that allow overruling any judicial decision blocking a development project if halting the project would cause “grave damage” to the public economy. Clearly, any hydroelectric dam or major highway is important for the economy and so can be allowed to go forward using these laws regardless of how many laws, constitutional
protections or international agreements have been violated. Security suspensions were established during Brazil’s 1964-1985 military dictatorship (Law 4348 of 26 June 1964: Brazil, PR, 1964), but continue in force today (Laws 8437 of 30 June 1992 and 12,016 of 7 August 2009: Brazil, PR, 1992, 2009). By 2014 these laws had already been used eight times in the case of Belo Monte and 12 times in the case of the Tapajós River dams (Palmquist, 2014). Very few people in Brazil even know of the existence of security suspensions, thereby diminishing any impetus to change these laws (Fearnside, 2015b).

ALTERNATIVES

It is not enough to fight each environmentally and socially disastrous project that is proposed in Amazonia. Proposals of alternatives are needed in some (but not all) cases. There is no need to provide alternatives for entrepreneurs wishing to make profitable investments in destructive activities in Amazonia, such as deforestation for cattle ranching (Fearnside, 1989). These actors can seek out other options on their own, and the penalties and rewards for different choices need to be adjusted to make sustainable options the most attractive.

Energy alternatives abound in Brazil, making the government’s plans for many more dams in Amazonia unnecessary (e.g., Fearnside, 2016b). The plans themselves are based on flawed projections, as costs and construction times of dams are systematically underestimated (e.g., Ansar et al., 2014) and Brazil’s assumed future energy demands are based on wildly unrealistic projections of economic growth (Prado et al., 2016). One obvious step is for Brazil to stop exporting electricity in the form of electro-intensive commodities like aluminum, which generate very little employment in Brazil while wreaking great damage through the dams built to supply these industries (Fearnside, 2016c). Brazil has many options for energy conservation, such as eliminating the electric showerheads that consume 5% of the country’s electricity (Brazil, CIMC, 2008, p. 58) for a service that can be performed by solar water heaters without using electricity at all (Costa, 2007). Brazil’s inefficient electrical transmission system, which wastes 20% of the power transmitted, could be greatly improved without the impact of building more dams (Rey, 2012). Brazil also has enormous undeveloped wind and solar resources, which clearly receive much lower priority than hydropower (Baitelo, 2012; Baitelo et al., 2013). In January 2016 Brazil’s president vetoed the inclusion of any funding for “non-hydraulic renewable energy” in the next five-year development plan (PPA) (ISA, 2016).

Some proposed highway projects, such as reconstruction of the BR-163 (Santarém-Cuiabá) Highway, have substantial economic benefits, albeit with serious environmental and social problems (Fearnside, 2007). In other cases, proposed roads are unviable and the best alternative is to simply not build them (Fleck, 2009). Economic viability is determined, in practice, solely from the financial costs and returns of the project, without considering the human and environmental impacts. Since these are high-impact projects, their unviability would very often be clear were these impacts given proper weight.

The transport case with the greatest potential consequences is the proposed reopening of the abandoned BR-319 Highway (Manaus-Porto Velho). This would open approximately half of what remains of Brazil’s Amazon forest to entry of deforesters
from the notorious “arc of deforestation” – the strip of land along the southern and
eastern edges of the forest where deforestation activity has been concentrated to date.
The state of Rondônia, long a deforestation hotspot, would be connected to Manaus in
central Amazonia, from which a road network already exists with connections to
Roraima and other locations (e.g., Barni et al., 2015). New roads are proposed
branching off the BR-319, including one that would cross the Purus River at Tapuã and
open the vast block of still-intact forest in the western half of the state of Amazonas.
The environmental impact study (EIA) is limited to considering impacts adjacent to the
highway route, not the impact of migration along existing roads or of building planned
side roads (UFAM, 2009). The EIA endorses the road as “environmentally and socially
desirable” based on the unlikely scenario of “strong environmental governance,” the
example being tourism in Yellowstone National Park in the USA (see Fearnside,
2015c). In a 177-page formal opinion (parecer), IBAMA’s technical staff concluded
that “… the EIA lacks the minimal conditions and information that would permit
evaluation of the environmental viability of the undertaking” (Arbocz et al., 2009, p.
175) and that “… even leaving aside the technical quality of the EIA, the preliminary
license cannot be emitted” (Arbocz et al., 2009, p. 176). Nevertheless, in April 2015
IBAMA approved what was euphemistically termed “maintenance” of the highway
(Amazonas em Tempo, 2015b) allowing all but laying down the final pavement.
Organized landless farmers have already begun to invade the central section of the
highway area even before the “maintenance” is completed (Assayag, 2016).

BR-319 is unnecessary for its supposed purpose of transporting the products of
factories in Manaus to markets in São Paulo. Transport of containers to São Paulo is
19% cheaper by the current system of barges between Manaus and Belém and truck
transport from Belém to São Paulo, and would be 37% cheaper than this current system
if adequate port facilities were installed (for example in Itacoatiara) to carry the freight
by ship to Santos, from which it would be distributed using the existing transport system
in the state of São Paulo (Teixeira, 2007). These represent much better alternatives not
only in terms of cost but also in terms of environmental impact; nevertheless, alternative
routes to São Paulo were not considered in the EIA for the BR-319 (Fearnside and
Graça, 2009). Promotion of the highway by politicians in Manaus has been an effective
means of attracting votes, and this is the most likely explanation for the priority given to
the project. The highway, most of the expense for which would be borne by taxpayers in
other parts of Brazil, is promoted as allowing Manaus residents to travel freely to
population centers in the southeastern part of the country for vacation travel. However,
because Manaus is privileged to be a free-trade zone where factories assemble products
from imported components, the practical effect of the road would instead be population
migration to Manaus from parts of the country with higher unemployment, with
negative consequences for urban residents in Manaus (Fearnside, 2010).

Unlike all other major construction projects in Brazil, the reconstruction of
Highway BR-319 has no economic viability study. These massive documents assess the
financial costs and benefits of proposed public works; in the case of a highway, for
example, such a study would estimate the quantity and value of freight to be transported
and would compare the costs with other alternatives. The justification for not requiring
a viability study was that the highway was a matter of “national security.” However,
this role is improbable given that the road is far from any international borders. In 2012
General Eduardo Villas Bôas, then head of the Amazonia Command and now head of
Brazil’s army as a whole, spoke at the National Institute for Research in Amazonia
(INPA) for almost two hours on “national security in Amazonia.” The speech was recorded and published (Villas Bôas, 2012). When questioned as to why nothing had been said about reopening Highway BR-319 as one of the priorities, he confirmed that the highway is not a priority for national security (see Fearnside, 2012b). Indeed, the highway does not appear in Brazil’s 2008 “Strategy for National Defense” (Brazil, PR, 2008). One might ask, then, why BR-319 is a priority under Brazil’s Program for the Acceleration of Growth, given that the project has neither a military nor an economic rationale. The most evident explanation is that supporting it attracts votes in Manaus—provided that the cost is paid by taxpayers throughout Brazil. Politicians in Manaus are invariably in favor of the road and compete with each other to take credit for its construction (e.g., Farias, 2015).

The value of environmental services represents the best alternative for supporting the traditional population in the Amazonian interior (Fearnside, 1997c, 2008a). The roles of Amazon forest in avoiding global warming (e.g., Fearnside, 2000a), in maintaining the hydrological cycle (including supply of water vapor to other parts of Brazil, such as São Paulo; e.g., Arraut et al., 2012), and maintaining biodiversity both for utilitarian and existential reasons (e.g., Fearnside, 1999), represent values that far exceed the monetary returns from most deforestation in Amazonia, for example selling the timber followed by clearing for extensive cattle pasture. Yet the institutional mechanisms for tapping environmental services are only beginning to be developed. A variety of challenges face Reducing Emissions from Deforestation and Degradation (REDD) as an option, but action on this front is essential. Challenges include the differing political interests of countries with forests providing services, such as Brazil, and the countries such as those in Europe that might pay for the services (Fearnside, 2012c, 2013). Another is the need for improved data quantifying the environmental services (Fearnside, 2008b). Finally, there is the “theoretical battlefield,” which involves questions on how carbon and other benefits are accounted (Fearnside, 2012d). Issues such as adjustments for uncertainty (Fearnside, 2000b) and the value attributed to time (Fearnside, 2002) can have much greater impact on the value attributed to avoiding Amazonian deforestation than do outstanding uncertainties about forest biomass and carbon stocks (e.g., Fearnside, 1995, 2009; Fearnside et al., 2000). A related question is the relative priority that should be given to creating protected areas near the arc of deforestation, where costs are high and the areas that can be protected are therefore small but where “additionality” is great due to immediate threat, versus creating larger reserves far from the current deforestation frontier.

The many challenges touched upon in the foregoing review suggest the need for a variety of actions if sustainable development is to be achieved in Brazilian Amazonia. More research is not enough in most cases. More fundamental are changes in decision making, elimination of corruption and other features of the business and political systems that lead to destructive outcomes, and legislative measures to eliminate legal loopholes (such as “security suspensions”) and creation of the institutional mechanisms for an Amazonian economy centered on environmental services rather than destruction of the forest.

CONCLUSIONS

Sustainable development is impeded by forces that favor land uses and infrastructure projects that are neither sustainable nor development: they are ephemeral
and often worsen rather than improve the wellbeing of the Amazon region’s inhabitants. The current decision-making and licensing processes are influenced to favor projects with high environmental and social impacts and few benefits to local populations. Decision-making and licensing procedures must be changed to favor other alternatives, of which Brazil has many. Rather than building more roads, much of the cargo in Amazonia can be transported by water. Rather than building more dams, Brazil’s electricity can be obtained by eliminating inefficiency, waste and exports of electro-intensive commodities and by investment in the country’s vast wind and solar resources. Traditional rural populations in the Amazonian interior can be supported by tapping the value of the forest’s environmental services, a goal that will require progress not only in environmental and social research but also in developing appropriate institutional mechanisms.

ACKNOWLEDGMENTS

The author’s research is supported exclusively by academic sources: Conselho Nacional do Desenvolvimento Científico e Tecnológico (CNPq: Proc. 305880/2007-1; 304020/2010-9; 573810/2008-7; 575853/2008-5), Fundação de Amparo à Pesquisa do Estado do Amazonas (FAPEAM: Proc. 708565) and Instituto Nacional de Pesquisas da Amazônia (INPA: PRJ15.125). This article is a contribution of the Brazilian Research Network on Global Climate Change, FINEP/ Rede CLIMA Grant No. 01.13.0353-00. Marcelo dos Santos prepared the figure. Three reviewers contributed valuable comments.

LITERATURE CITED


Arbocz GF, Magalhães L, Pereira MG, Naliato VJ, Reinecke. W. 2009. Parecer No. 078/2009 - COTRA/CGTM0/DILIC/IBAMA. Assunto: Analise da viabilidade ambiental das obras de pavimentação/reconstrução da rodovia BR-319, no trecho entre os Km's 250 a 655,7, com 405,7 km de extensão no Estado do


Brazil, IBAMA (Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis). 2008. Parecer Técnico No. 45/2008-


Brazil, IBAMA (Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais) 2011. Parecer No 52/2011AHE Belo Monte-

Estabelece normas processuais relativas a mandado de segurança. PR: Brasília,


Fearnside PM. 2012d. The theoretical battlefield: Accounting for the climate benefits of maintaining Brazil’s Amazon forest. Carbon Management, 3(2), pp 145-148. doi: 10.4155/CMT.12.9


substitutivo-do-deputado-pereira-dara-celeridade-e-desburocratizara-o-
processo#.WEwgrYWcFIs [10 December 2016].

bancos são principais financiadores de campanhas eleitorais. Folha de São Paulo,
doadoras-somam-gasto-de-r-1-bi-desde-2002.shtml [8 March 2016].

Greenpeace: São Paulo, SP, Brazil. 17 June 2005.
http://riosvivos.org.br/a/Noticia/Humoristas+do+Pânico+entregam+premio+Mot
osserra+para+Maggi/6985 [10 December 2016].

Hurwitz Z. 2011. IBAMA President resigns over Belo Monte licensing. International
Rivers: Berkeley, California, USA, 13 January 2011.
https://www.internationalrivers.org/blogs/258/ibama-president-resigns-over-
belo-monte-licensing [8 March 2016].

Ickowitz A, Slayback D, Asanzi P, Nasi R. 2015. Agriculture and deforestation in the
Democratic Republic of the Congo: A synthesis of the current state of
knowledge. CIFOR Occasional Paper no. 119. Center for International Forestry
Research (CIFOR), Bogor, Indonesia. doi: 10.17528/cifor/005458

Infomoney. 2014. Senador eleito mais rico tem quase R$ 400 milhões; veja onde eles
investir/fundos-de-investimento/noticia/3624539/senador-eleito-mais-rico-tem-
quase-400-milhoes-veja-onde [10 December 2016].

ISA (Instituto Socioambiental). 2016. Dilma veta energias renováveis não hidráulicas
no Plano Plurianual. Notícias Socioambientais, 21 January 2016; updated 27

Leitão M. 2010. Belo Monte’s Avatar. International Rivers: Berkeley, California,
U.S.A., 24 June 2010. https://www.internationalrivers.org/resources/belo-
mon-te%E2%80%99s-avatar-2762.

Lima GMR. 2016. Constitucionalização de Políticas Públicas e Emendamento
Escola de Administração de Empresas de São Paulo: São Paulo, SP, Brazil; 102
pp.
http://bibliotecadigital.fgv.br/dspace/bitstream/handle/10438/16375/TeseGiovan
naLima.pdf?sequence=1 [10 December 2016].

Miettinen J, Shi C, Liew S. 2011. Deforestation rates in insular Southeast Asia between
2486.2011.02398.x


FIGURE LEGEND

Figure. Map of Brazilian Amazonia with locations mentioned in the text.