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ABSTRACT 

Hydroelectric dams emit greenhouse gases, especially methane (CH4), which is 
produced by decomposition of organic matter under anoxic conditions at the bottom of the 
reservoirs. A part of this gas is released by bubbling and diffusion through the surface of the 
reservoir, and part from the water that passes through the turbines and spillways. The portion 
of the emission that occurs through the reservoir surface has been calculated in estimates by 
the Brazilian government agency responsible for energy planning. The official calculation 
used a power law that resulted in an estimate of CH4 76% lower than a corrected “basic” mean 
that represents the arithmetic mean of the measurements that served as the basis of the 
calculation. Expressed in comparison to the official value, the approximation of the arithmetic 
mean is 320% higher. We show that the adjustment that was applied in the official estimates 
was based on several mathematical errors, and that the real value should be higher, rather than 
lower, than the arithmetic mean. We compared various possible methods for generating a 
“corrected” estimate, all with results far above the official values. A best method was 
identified that indicates a reservoir-surface emission 345% higher than the official value. For 
Brazil’s 33×103 km2 of reservoirs, the total impact of the underestimate of surface emissions 
of CH4 is almost as large as the emission produced by burning fossil fuels in greater São 
Paulo, while the total emission of the reservoir surfaces surpasses the emission of this city. 
Emissions from the water that passes through the turbines and spillways represent an 
additional impact on global warming. 

 
Key-words: Brazil, Carbon, Dams, Global warming, Greenhouse effect, Methane. 
 
 
 
 
INTRODUCTION 
  
Greenhouse gas emissions from reservoirs, especially methane (CH4), were identified first by Rudd et 
al. (1993) in Canada. Since then, a series of studies has estimated emissions, with a wide variety of 
results and interpretations (see review in Fearnside 2008; see also Ramos et al. 2006; DelSontro et al. 
2010). Dos Santos et al. (2008) argued that, although greenhouse gas emissions by hydroelectric 
plants exist, their magnitude is substantially lower than the emissions indicated by various estimates 
in the literature (e.g., Fearnside 2002, Kemenes et al. 2007). The estimates given by dos Santos et al. 
(2008) are the same as those used in the publication of ELETROBRÁS (2000) on the total methane 
emissions of surfaces of reservoirs in the country. The arguments of dos Santos et al. (2008), and their 
overall conclusion that emissions are small, have been challenged over the course of an extensive 
debate (e.g., Fearnside 2004, 2006, 2008, 2009). However, a part of the reasoning of dos Santos et al. 
(2008) still requires further investigation. This is a calculation that these authors present of emissions 
by bubbling and diffusion through the surface of reservoirs. Dos Santos et al. (2008) used the 
frequency distribution of different magnitudes of emissions (in mg m-2 d-1 = kg km-2 d-1) in existing 
measures, based on measurements at seven Brazilian reservoirs (Miranda, Três Marias, Barra Bonita, 
Segredo, Xingó, Samuel and Tucuruí). These authors applied the calculation using a power law to 
                                                            
 



3 
 

adjust the estimated average emission downward in relation to the value indicated by a simple mean 
of the measured data. Here, we identify a series of errors in the calculations of dos Santos et al. 
(2008), and show that the adjustment should be upward, as compared to the simple mean. This 
implies that there is greater impact of greenhouse-gas emissions from reservoirs. 
 
A phenomenon that is characterized by many small events and a few large events, such as earthquakes 
and forest fires, can be better represented by the power law than by the arithmetic mean of the 
observations. This is because any sampling period will be insufficient to capture the rare events of 
very large magnitude. The difficulty inherent in observing very large values logically implies that the 
value estimated by a power law must be greater than the arithmetic mean, the magnitude of this 
difference depending on the frequency distribution of events of different sizes for each phenomenon. 
The logic of a power law, therefore, leads to an adjustment of the values in the opposite direction 
from the adjustment made by dos Santos et al. (2008) and ELETROBRÁS (2000) for emissions from 
hydroelectric dams. 
  
THE CALCULATION OF DOS SANTOS ET AL. (2008): PROBLEMS AND 
ALTERNATIVES 
  

According to dos Santos et al. (2008), use of the arithmetic mean overestimates emissions 
from hydroelectric reservoirs surfaces. However, this conclusion is based on mathematical 
errors. The justification for the assertions of dos Santos et al. (2008) is contained in the thesis of dos 
Santos (2000), and is repeated in ELETROBRÁS (2000). These studies assume that the set of 
emissions values measured at different times and locations follows a power law. For this distribution, 
the probability density f of an emission measure of I mg m-2 d-1 will be: 
  

( )f I I λ−∝  
 
where the exponent λ is a constant ("∝ " means "proportional to"). Dos Santos et al. (2008) assumed 
values for a lower bound Imin and a upper bound Imax for the distribution. Since any probability 
distribution must comply with 
  

 ( )
max

min

1
I

I

f I dI =∫        (1), 

  
it follows that 
  

( ) 1 1
min max

1f I I
I I

λ
λ λ

λ −
− + − +

⎡ ⎤−
= ⎢ ⎥−⎣ ⎦            

(2) 

  
(for 1λ ≠ ; Pueyo 2007). The theoretical mean for a distribution is defined as: 
  
  

( )
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I

I

I If I dI= ∫         (3). 

  
In the case of a power law, from Eqs. 2 and 3: 
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Dos Santos (2000) followed another route and reached a different result. Instead of using the 
probability density f(I), he used an expected number of occurrences N(I) for each I: 

 
( )N I AI λ−=

             
(5), 

 
where A is a constant.  
 
This formalism would not present a problem if it were used correctly. Given that N(I) is proportional 
to f(I), it follows from Eqs. 1, 3 and 5 that: 
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However, dos Santos (2000) used a different expression: 

( ) ( )

( ) ( )

max

min

max

min

1

I

I
Santos I

I

IN I dN I
I

N I dN I
=

∫

∫
       (6). 

  
This is the first mistake: by definition, the mean of the emissions of gases results from 
integrating over the emission values I, not over the frequency values N. 

  
The result of Eq. 6 is: 
 

( )
( ) ( )

2 1 2 1
min max

1 2 2
min max

2
2 1Santos

I I
I

I I

λ λ

λ λ

λ

λ

− + − +

− −

−
=

− −
      (7). 

  
Dos Santos (2000) considered that 2 1

max 0I λ− + →  and 2
max 0I λ− → , obtaining 

1 min
2

2 1SantosI Iλ
λ

=
−

        (8). 

  
The elimination of Imax is acceptable in Eq. 7 (assuming that l > 0.5 and Imax/Imin has a very large 
value), while the term with Imax has great weight in the truest expression of the mean, Eq. 4 (except for 
when λ > 2 and Imax/Imin is "large"; the values of λ estimated by dos Santos (2000) were smaller). 

 
The second problem is that, when making the calculations, dos Santos (2000) introduced 

the values of λ with the wrong sign. Thus, the author implicitly applied the equation: 
 

( )
( )2 min

2
2 1SantosI I

λ
λ
−

=
− − ,

 

that is, 
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2 min
2

2 1SantosI Iλ
λ

=
+

         (9). 

  
Neither Eq. 8 found by dos Santos (2000) nor Eq. 9 (which he used implicitly) resembles 

the real theoretical mean in Eq. 4. So what is the relationship between the true theoretical mean (Eq. 
1) and the sample mean? If one attributes to Imax the value of the largest emission observed, the means 
calculated by the two methods must coincide, except for the inevitable sampling error, without any 
significant bias. Moreover, this error affects both methods, since to applying Eq. 4 one must estimate 
the parameters of the distribution. However, by increasing the sample size one also increases the 
largest value observed, which, in turn, underestimates the theoretical maximum. This would not be a 
problem for calculating the mean of other statistical distributions, but it is a problem for the power 
law (Pueyo 2007), where the most extreme events represent a very important part of total emissions. 
The consequence is that, in most cases, the sample mean underestimates the real average, unlike 
the conclusion of dos Santos (2000), ELETROBRÁS (2000) and dos Santos et al. (2008). 

 
Knowing the correct equations, the power law can be applied to the emissions data, but still 

there are other issues that should be considered. 
 
Dos Santos (2000) estimated λ with a simple regression on the histogram with logarithmic axes. 

This method results in a very large bias (Pueyo & Jovani 2006). Some more effective procedures are: 
(1) applying the regression to the data grouped into multiplicative bins (Pueyo & Jovani 2006), (2) 
obtaining the maximum likelihood estimator (MLE, see Box I) (White et al. 2008), or (3) Bayesian 
methods. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The definition of the bounds Imin and Imax is also not trivial. Dos Santos (2000) used the 
midpoint of the first and the last bins of the histogram. According to this criterion, values depend on 
the width of the bins, which was chosen arbitrarily by the author. In the case of Imin, a small 
modification produces a major change in the estimated mean: note that in Eq. 4, 0→I  when 

0min →I  (for λ �> 1). The range of values [Imin, Imax] where the power law is considered valid must 
be based on data, not an arbitrary criterion. 

 
Finally, there is the problem of values that fall outside the range of validity of the power law, 

which were disregarded by dos Santos (2000). In this distribution, the greatest concentration is at the 
extreme lower end Imin, but Imin is always greater than zero. Probably there are emissions data in the 
range min0 II <≤ . These data are also relevant for calculating the mean. There are two methods to 
incorporate them. The first is to examine the non-power-law part ( min0 II <≤ ) and the power-law 
part ( maxmin III ≤≤ ) separately. The second is to use a single expression that represents a good 
approximation to the two parts. For example, Ramos et al. (2006) used the generalized Pareto law: 

Box I. Abbreviations used 
  
MLE: maximum likelihood estimator. 
NEL: negative exponential law. 
TGPL: truncated generalized Pareto law. 
TPL: truncated power law. 
TPL-s: truncated power law (with parameters estimated by dos Santos). 
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With reparameterization,
 

11
+=

ξ
λ

,  ξ
σϕ =

,
 Eq. 10 becomes: 

( ) ( ) ( ) λϕϕλ −−− +−= IIf 11 11               (11). 
 
For large values, Eq. 11 corresponds to a power law: 
 

( ) ( ) ( )[ ] λλλ ϕλϕϕλ −−−−− −→+− II 111 111     for   ∞→I . 
 
For small values, the generalized Pareto law prevents the singularity that causes the power law not to 
extend to zero:  ( ) ∞=

→
If

I 0
lim  in Eq. 2, while  ( ) ( ) 110 −−= ϕλf  in Eq .11.  

In the case of a power law with 2≤λ ,   ∞→I  when  ∞→maxI  in Eq. 2. Consequently, for 
these values of λ, Imax should always be finite. The same rule applies to the generalized Pareto law. 
For 2≤λ  one must use the truncated generalized Pareto law (TGPL): 
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      (12), 

 
From Eqs. 1 and 12, the mean of LPGT is: 
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 (13), 

 
Eqs. 2 and 13 can be used to calculate the mean after fitting their respective distributions. 

However, any distribution is a simplification of reality. The sample mean is more robust since it does 
not presume a particular distribution. Dos Santos (2000) used his formula (Eq. 8) to calculate the 
emission considering only values within the observed limits. But for a calculation that is restricted to 
these limits, the most reliable method is the sample mean. However, if correctly applied, the power 
law (and its generalization in Eq. 11) is useful for taking a step forward and inferring the extreme 
events that are so infrequent that they are usually not observed during sampling (Pueyo 2007). 

  
REDOING THE CALCULATIONS 

  
To obtain an alternative to the official estimates, we applied different statistical distributions 

and compared the quality of the fits. The approach used was frequentist, like that of dos Santos (2000) 
and ELETROBRÁS (2000), so as not to divert attention to the frequentist/Bayesian debate and the 
details of the Bayesian approach. The results formed the basis for estimating mean emissions. 

The parameters were adjusted by the maximum likelihood estimator (MLE), except for the 
upper cutoff point Imax, for which the MLE has a systematic bias (Pueyo 2007). Since we do not have 
access to the original data, we developed a version of the MLE that starts from data that had been pre-
grouped into bins (Appendix). The MLE was applied assuming the Imax value that we call "basic," 
which is the upper limit of the top bin. Afterwards, the "extrapolated" value of Imax was calculated by 
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the method of Pueyo (2007), corresponding to events that are so extreme that they are not included in 
the sample. 

Distributions considered were the truncated power law (TPL), truncated generalized Pareto law 
(TGPL) and the negative exponential law (NEL), in addition to the TPL with parameters estimated by 
dos Santos (2000) (TPL-s) in place of the parameters estimated by MLE. The TGPL was studied 
because it is equivalent to TPL except at the lower end, where it is more realistic as was explained in 
the previous section. The NEL was studied to allow comparison with a distribution that is also 
asymmetric, but with events that are less extreme than in a power law (corresponding to the limit 
 0→ξ   of Eq. 10): 

 
( ) σσ IeIf −−= 1          (14) 

 
(initially, a truncated version of the NEL was considered so that it would be more comparable with 
the TPL, but this did not lead to any difference in the result because the estimated limits were Imin = 0 
and ∞→maxI ). The four distributions were compared using the likelihood ratios.  

Mean emissions were calculated for the TPL and the TGPL. As has been argued, the sample 
mean is probably the best estimator of the real mean for the “basic” Imax because it does not 
presuppose any concrete distribution. This cannot be calculated directly without access to the original 
data, but can be approximated with the equation: 
  

∑=
j

jj InI           (15), 

 
where Ij is an emission value representative of bin j and nj is the number of data points in this bin. The 
most immediate option is to assign Ij the central value of the bin (non-parametric method), but this 
represents an overestimate because, in the power law and similar distributions, the mean of the values 
within each bin is lower than the central value. To offset this bias, Eq. 15 was applied assigning to 
each Ij the mean for the bin according to the TGPL (semi-parametric method). The sample mean 
reconstructed in this way was complemented with an estimation of undetected extreme events (again 
using the parameters of the TGPL). The Appendix gives more details on the methods. 

The results of fitting the distributions are represented in Figures 1 and 2, which compare the 
empirical with the expected frequencies according to each hypothesis on a log-log scale.  
  

[Figures 1 & 2 here] 
  
In the case of bubbling, the exponent estimated by MLE was  λ = 1.21 for the TPL and the 

TGPL, while dos Santos (2000) estimated λ = 0.99. Dos Santos assumed that Imin = 12.5 mg m-2 d-1 
while the value estimated by the MLE in the TPL is Imin = 0.53 mg m-2 d-1. The value estimated for ϕ 
(equivalent to Imin) in the TGPL is ϕ = 0.54 mg m-2 d-1. The extrapolated upper limit is Imax = 596 mg 
m-2 d-1 for the TPL and the TGPL. 

For diffusion, the exponent estimated by MLE was λ= 2.08 for the TPL and λ = 2.65 for the 
TGPL, while dos Santos (2000) estimated λ = 2.00. Dos Santos took I min = 12.5 mg m-2 d-1, while the 
value estimated by MLE in Imin, TPL is = 7.99 mg m-2 d-1. The value estimated for ϕ in TGPL is ϕ = 
21.82 mg m-2 d-1. The extrapolated upper limit is Imax = 714 mg m-2 d-1 for TPL and Imax = 929 mg m-2 
d-1 for TGPL. 

Tables I and II show the likelihood ratios between the different distributions. The TPL and the 
TGPL have almost equal likelihoods, many orders of magnitude above the likelihood of the TPL-s 
and the NEL. 

  
[Tables I & II here] 

  
Applying Eq. 9, dos Santos (2000) obtained mean emissions of 8.36 mg m-2 d-1 (bubbling) and 

9.93 mg m-2 d-1 (diffusion). Applying the correct equation (Eq. 4) with the parameters that they 
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estimated, the means go up to 143 mg m-2 d-1 (bubbling) and 51.55 mg m-2 d-1 (diffusion). However, 
applying the same equation with the parameters of the TPL estimated by MLE (with the “basic” Imax), 
the results are 44.49 mg m-2 d-1 (bubbling) and 31.20 mg m-2 d-1 (diffusion). In the case of TGPL, the 
results are 44.33 mg m-2 d-1 (bubbling) and 27.26 mg m-2 d -1 (diffusion). Using the extrapolated Imax, 
the TPL gives 47.22 mg m-2 d-1 for bubbling and 32.71 mg m-2 d-1 for diffusion, while the TGPL gives 
47.05 mg m-2 d-1 for bubbling and 29.03 mg m-2 d-1 for diffusion. 

Applying the non-parametric method, the results are 54.57 mg m-2 d-1 for bubbling and 31.63 
mg m-2 d-1 for diffusion. The semi-parametric method, which is probably the most realistic, gives 
48.67 mg m-2 d-1 (bubbling) and 28.21 mg m-2 d-1 (diffusion), or 76.88 mg m-2 d-1 in total, or 10.9%, 
10.7% and 10.8% lower, respectively. Considering extreme events that were not detected, the means 
rise moderately to 51.37 mg m-2 d-1 (bubbling), 29.97 mg m-2 d-1 (diffusion) and 81.34 mg m-2 d-1 
(total), corresponding to increases of 5.5%, 5.2% and 5.8%, respectively. 

These analyses support the idea that methane emissions are well characterized by a power law. 
The two variants of the power law we studied, TPL and TGPL, show the same performance, but this 
is a consequence of using data that were pre-grouped into bins. It is believed that the TGPL is best 
suited for data that are not grouped. All realistic approximations (TPL with parameters estimated by 
MLE and TGPL with parameters estimated by non-parametric and semi parametric (MLE) give 
similar mean emission values between them and are clearly above the values estimated by dos Santos 
(2000) and ELETROBRÁS (2000). While these studies estimated 8.36 mg m-2 d-1 for bubbling and 
9.93 mg m-2 d-1 for diffusion, our best estimate is 51.37 mg m-2 d-1 for bubbling and 29.97 mg m-2 d-1 
for diffusion (Fig. 3). Compared to the official estimates, our best estimate is 514% higher for 
bubbling, 202% higher for diffusion, and 345% higher for the two together, i.e., for the total emission 
from the reservoir surface (without considering the effect of the official figures having omitted 
emissions from the water that passes through the turbines and spillways). 

  
[Figure 3 here] 

  
COMPARISON OF RESULTS 

  
Dos Santos et al. (2008) reported that the calculation they used resulted in a lower value than 

the simple arithmetic mean of the emission measurements, but did not mention the magnitude of this 
difference. Calculating emissions in both ways, the difference is huge (Fig. 3 and Table III). These 
differences exist both for CO2 and for CH4. Although ELETROBRÁS (2000) and dos Santos et al. 
(2008) did calculations for both gases, we will only consider CH4, which represents an impact on 
global warming, because, in the case of CO2 emitted by the water in the reservoir, almost all of the 
emission comes from the decomposition of biotic material derived from the products of 
photosynthesis in or around the reservoir, which remove the same amount of CO2 from the 
atmosphere. In contrast, the role of the reservoir in transforming CO2 into CH4 represents a net impact 
on global warming (with the exception of the small part that represents the action of the carbon that 
otherwise would have been emitted in the form of CO2, this avoided impact being counted only over 
the roughly ten years that each molecule of CH4 remains, on average, in the atmosphere). 

  
  [Table 3 here] 

  
The value of dos Santos et al. (2008) for emissions of CH4 (adding bubbling and diffusion) is 

78% lower than our best estimate (the mean corrected with adjustment by the power law: Table III), 
or expressed relative to the value of dos Santos et al. (2008), our value is 345% higher. The 
importance of this becomes evident when applied to the set of Brazilian dams, as was done by 
ELETROBRÁS (2000) using the equations of dos Santos (2000). ELETROBRÁS (2000) made this 
calculation for each of the 217 reservoirs in Brazil, totaling 32,975.48 km2, an area larger than 
Belgium. When the emissions of CH4 thus calculated are compared to emissions calculated by our 
best estimate (Table IV), the difference is 4.4 million tons of carbon equivalent to carbon in the form 
of CO2 per year, when calculated using the global warming potential (GWP) of 21 for methane that 
the Kyoto Protocol used for the 2008-2012 period. The difference goes up to 5.2 million tons using 
the value 25 for the GWP, obtained from the most recent report of Intergovernmental Panel on 
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Climate Change (IPCC) (Forster et al. 2007). The difference goes up even more, to 7.0 million tons, 
when calculated with a GWP of 34, from a study done subsequent to the IPCC report, incorporating 
indirect effects that were omitted in previous calculations (Shindell et al. 2009). This difference is 
close to the annual emission by burning fossil fuels in greater São Paulo. São Paulo emitted 4.3 
million tons of carbon in 2003 with a population of 10.7 million (COPPE 2005). Considering the 
entire metropolitan area today, the population is roughly twice that, presumably emitting around 8 
million tons of carbon. The emission from the surfaces of reservoirs of hydroelectric dams in Brazil, 
considering our best estimate (81.4 mg m-2 d-1) and an up-to-date estimate of the GWP of methane 
(34), already exceeds this value, with 9.08 million tons of CO2 carbon-equivalent per year. 

Emissions from the surface of reservoirs are only part of the impact of hydroelectric dams on 
global warming, since the methane emission from water that passes through the turbines and spillways 
often more than doubles the total impact (e.g., Fearnside 2002, 2009). 

  
CONCLUSION 
  

The official figures for the emission of methane from the surfaces of Brazilian hydroelectric 
reservoirs have grossly underestimated these emissions. Our best estimate is more than three times 
higher. For the 33,000 km2 of Brazilian reservoirs, the underestimate in the official numbers for the 
annual emissions of CH4 by the surfaces of reservoirs is almost as large as the entire global-warming 
contribution made by fossil-fuel burning in greater São Paulo, and the corrected total for emissions 
from these reservoir surfaces surpasses the emission of this metropolis of over 20 million inhabitants. 
Emission from the water that passes through the spillways and turbines (not included in official 
numbers) represents a substantial additional impact. 
  
APPENDIX 

  
This Appendix adds some mathematical details of the methods used in the Redoing the 

calculations section. 
To estimate the parameters, except for Imax, and to compare the hypotheses, the likelihood 

function (L) was used. This function is defined as: 
L= f (I |θ; H d)          (16), 
where I is the vector of the data, θ is the vector of the parameters and Hd is the hypothesis of the type 
of distribution. In this case the original data were not directly accessible, only being presented pre-
grouped into K bins. Therefore, the likelihood function used was: 
 
L= f (n |θ;H d)          (17), 
 
where n is the vector (n1, ..., nj, ..., nK) of the number of data points in bin j. In this case, L represents a 
multinomial distribution, 
  

Kj n
K
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j
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ppp
nnn
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1

1
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=
           

(18), 

 

where N is the total number of data points ∑
=

=
K

j
jnN

1

, and p j (θ ; Hd) is the expected probability of a 

data point belonging to bin j.  
This probability has the following form for the truncated power law (TPL) (Eq. 2): 
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where cj is the upper limit of the bin j and we assume Imax = c K (following the criterion of the “basic” 
Imax, described below). For the truncated generalized Pareto law TGPL): 
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( ) 1
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111
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11

11
+−−

+−−+−

−
−

+−

+−+
= λ

λλ

ϕ

ϕϕ

I

cc
p jj

j        (21). 

 
For the negative exponential law (NEL): 

 
σσ jj cc

j eep −− −= −1

, 
Kj ≤≤1             (22). 

 
The function L was used for two purposes. First, to fit the distributions by calculating the 

maximum likelihood estimator, which is the vector of parameters θ that maximizes L; in all cases, the 
parameters were fit numerically. Second, this function was used to compare the different hypotheses 
by using the likelihood ratio, which is obtained by dividing the L of one hypothesis by the L of the 
other hypothesis. 

The only parameter that was not fit using the MLE method was Imax. The MLE of Imax is the 
largest value observed, which is always an underestimate of the highest possible value. Our study 
considered two Imax values. The first was the "basic" value, which was used to calculate L. This 
consists of the upper limit of the top bin. After estimating the other parameters of the distribution, the 
"extrapolated" value of Imax was calculated, which is an estimator of the true Imax following the method 
of Pueyo (2007). In the case of the TPL, 
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where max(I) is the largest value in the sample. For pre-grouped data, the value assigned to max(I) 
was the central value of the highest bin that contained data. In the case of the TGPL, 
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The mean was estimated for the TPL and the TGPL applying Eqs. 4 and 13. It was also 

estimated by using a non-parametric and a semi-parametric method, based on Eq. 15. In the case of 
non-parametric method, the values of Ij correspond to the midpoint of each bin, ( ) 21 jjj ccI += − . 
For the semi-parametric method, Ij corresponds to the expected mean of bin j according to the TGPL: 
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Figure Legends 
 
 
Figure 1. Statistical distribution of methane emissions from bubbling. The abscissas (I) are the 

midpoints of the intervals, or bins, into which the data are grouped (in mg m-2 d-1). The 
ordinates (n) are the number of observations in each interval. Both axes have logarithmic 
scales. The open circles indicate the theoretical frequency of each distribution model. The 
solid circles indicate the empirical frequency. The solid triangles on the abscissa axes identify 
the intervals with zero observations. The goodness of fit is more difficult to appreciate for 
the intervals corresponding to the larger emissions, where the empirical frequencies are 
typically 0 or 1, while the theoretical frequencies of the models with a good fit are values 
that are intermediate between 0 and 1. 

 
Figure 2. Statistical distribution of methane emissions by diffusion. See the caption of Figure 1 for 

details. 
 
Figure 3. Comparison of the mean emissions of methane based on different criteria. The 

“ELETROBRÁS” criterion corresponds to dos Santos (2000) and ELETROBRÁS (2000) and is 
based on methodological errors. The “corrected” basic emission is the sample mean of the 
data used in these same studies (inferred from pre-binned data). The “corrected” 
extrapolated mean adds the probable effect of extreme events that were not included in the 
sample. The “corrected” extrapolated emission (our best estimate) exceeds the 
“ELETROBRÁS” value by 514% for bubbling, by 202% for diffusion, and by 345% for the sum 
of the two. 



 
  
  

Table I. Likelihood ratios between the hypotheses considered (bubbling)a. 
  TPL-s TPL TGPL NEL 
TPL-s 1.00 4.15 × 1031 4.09 × 1031 7.66 × 109 
TPL 2.41 × 10-32 1.00 0.99 1.85 × 10-22 
TGPL 2.44 × 10-32 1.01 1.00 1.87 × 10-22 
NEL 1.31 × 10-10 5.42 × 1021 5.34 × 1021 1.00 
aValues greater than 1 mean that the hypothesis in the column explains the data better than the 
hypothesis in the row, and vice versa. Details in the Appendix. 
  

 



 
Table II. Likelihood ratios between the hypotheses considered (diffusion)a. 
 TPL-s TPL TGPL NEL 
TPL-s 1.00 2.19 × 1011 2.23 × 1011 1.43 × 10-5

TPL 4.57 × 10-12 1.00 1.02 6.53 × 10-17

TGPL 4.49 × 10-12 0.98 1.00 6.41 × 10-17 
NEL 7.00 × 104 1.53 × 1016 1.56 × 1016 1.00 
. 
aValues greater than 1 mean that the hypothesis in the column explains the data better than the 
hypothesis in the row, and vice-versa. Details in the Appendix. 
 
 



 
Table III. Comparison of calculations of CH4 emissions from hydroelectric reservoirs. 
 
    Values for emissions (Ī) in mg m-2 d-1    Percentage difference between results 

  

Process “Basic” 
corrected 
meana  

Corrected 
mean 
"extrapolated" 
with the 
power law 

Dos Santos 
et al. 
(2008) 

Dos 
Santos et 
al. (2008) 
compared 
to the 
“basic” 
corrected 
mean  

Average 
adjusted 
basic 
compared 
to dos 
Santos et 
al. (2008)

Dos Santos et 
al. (2008) 
compared to 
the mean 
corrected 
"extrapolated" 
with the 
power law 

Corrected 
average 
"extrapolated" 
with the 
power law 
compared to 
dos Santos et 
al. (2008) 

                  
  Bubbling 48.7 51.4 8.36 -83 +482 -83 +514 
  Diffusion 28.2 30.0 9.93 -65 +184 -67 +202 

  
Total surface 76.9 81.4 18.29 -76 +320 -78 +345 

  
 
aMean corrected with the semi-parametric method (see Appendix). 
 



 
Table IV. Impact of CH4 emission from the surface (bubbling + diffusion) of Brazilian reservoirs calculated by different methods considered 
in this study (corrected “basic” mean and the mean corrected with the power law), and by the methods of dos Santos et al. (2008). 
 

  

"Basic”  
corrected 
mean " 

Mean corrected  
with the power 
law 

Dos Santos 
et al. (2008)   

Emission  (kg km-2 d-1) 76.9 81.3 18.29   
Annual emission 32,975.48 km² (million tons) 0.93 0.98 0.22   
CO2-equivalent carbona , using a GWP for 
CH4 of 21b (million tons year-1) 5.30 5.61 1.26   

CO2-equivalent carbona, using a GWP for CH4 
of 25c (million tons year-1) 6.31 6.68 1.50   

CO2-equivalent carbona, using a GWP for CH4 
of 34 d (million tons year-1) 8.59 9.08 2.04   

  
 

aCO2-equivalent carbon is calculated, by first multiplying the emission of CH4 (in tons of gas) times the GWP 
(global warming potential) to obtain the equivalent number of tons of CO2 gas, and then this is converted to the 
weight of carbon by multiplying by 12 (atomic weight of carbon) and dividing by 44 (molecular weight of CO2). 
The GWP refers to the effect on global warming caused by the emission of one ton of gas (in this case CH4) 
compared to the impact of one ton of CO2. As in the Kyoto Protocol, the GWPs used have time horizons of 100 
years with no application of a discount rate for time.  
bSchimel et al. (1996). Value used for the first commitment period (2008-2012) of the Kyoto Protocol. 
cForster et al. (2007). 
dShindell et al. (2009). 
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