The text that follows is a PREPRINT.

Please cite as:

Barni, P.E.; P.M. Fearnside & P.M.L.A. Graça. 2015. Simulating deforestation and carbon loss in Amazonia: impacts in Brazil's Roraima state from reconstructing Highway BR-319 (Manaus-Porto Velho). *Environmental Management* 55(2): 259-278.

doi: 10.1007/s00267-014-0408-6

ISSN: 0364-152X

Copyright: Springer.

The original publication is available at <u>www.springerlink.com</u>

Simulating deforestation and carbon loss in Amazonia: impacts in Brazil's Roraima state from reconstructing Highway BR-319 (Manaus-Porto Velho)

Paulo Eduardo Barni^{a,b}; Philip Martin Fearnside^{a,*}; Paulo Maurício Lima de Alencastro Graça^a

^aNational Institute Research in Amazonia (INPA), Av. André Araújo,
2936, CEP: 69067- 375, Manaus, Amazonas, Brazil
^bState University of Roraima (UERR), Rodovia BR-210, Km 70. CEP:
69375-000, São João da Baliza, Roraima, Brazil

*Corresponding author. Tel.: +55 92 3643 1822; fax +55 92 3642 1838

E-mail address: pmfearn@inpa.gov.br (P.M. Fearnside).

Acknowledgments

The National Council of Scientific and Technological Development (CNPq: proc. 557152/2005-4, 474548/2006-6; 305880/2007-1), the Amazonas Foundation for the Support of Research (FAPEAM), the GEOMA network and the National Institute for Research in Amazonia (INPA) contributed logistical and financial support. G.C. Carrero helped in the field activities. We thank the editors and five reviewers for helpful comments.

ABSTRACT

Reconstruction of Highway BR-319 (Manaus-Porto Velho) would allow access from the "arc of deforestation" in the southern part of Brazil's Amazon region to vast blocks of forests in central and northern Amazonia. Building roads is known to be a major driver of deforestation, allowing entry of squatters and other actors. Rather than deforestation along the highway route, here we consider the road's potential for stimulating deforestation in a separate location, approximately 550 km north of BR-319's endpoint in Manaus. Reconstructing BR-319 has great potential impact to start a new wave of migration to this remote region. The southern portion of the state of Roraima, the focus of our study, is already connected to Manaus by Highway BR-174. We modeled deforestation in southern Roraima and simulated carbon emissions between 2007 and 2030 under four scenarios. Simulations used the AGROECO model in DINAMICA-EGO© software. Two scenarios were considered with reconstruction of BR-319 and two without this road connection. For each of the two possibilities regarding BR-319, simulations were developed for (1) a "conservation" (CONSERV) scenario that assumes the creation of a series of protected areas and (2) a "business-as-usual" (BAU) scenario that assumes no additional protected areas. Results show that by 2030, with BR-319 rebuilt, deforestation carbon emissions would increase between 19% (CONSERV) and 42% (BAU) above corresponding no- road scenarios.

Simulating deforestation and carbon loss in Amazonia: impacts in Brazil's Roraima state from reconstructing Highway BR-319 (Manaus-Porto Velho)

Introduction

4 5

6

19

20 21

7 Deforestation along the southern edge of Amazonia has advanced much faster than in other parts of the region due to the expansion and upgrading of the road 8 9 network in the 1970s and 1980s (Fig. 1b). Roads allowed a large population of migrants to move to remote areas of the Amazon, and deforestation spread quickly 10 (e.g., Perz et al. 2002; Pfaff 1999). In the mid-1980s, deforestation assumed alarming 11 12 proportions with paving of major highways connecting Amazonia to São Paulo and other population centers in the South and Southeast regions of the country (Fearnside 13 1989; Oliveira 2005). Key developments included reconstruction of Highway BR-14 15 364 (Cuiabá-Porto Velho) and part of Highway BR-163 (Cuiabá-Santarem), allowing migrants to move to Amazonia. More recently, roads have facilitated arrival of 16 soybeans, boosting agri-business on the southern edge of region (Carneiro-Filho 17 2005; Fearnside 2001, 2007). 18

[Figure 1 here]

22 Deforestation in Brazilian Amazonia has, until recently, been concentrated in the "arc of deforestation," a crescent-shaped strip along the forest's eastern and 23 southern edges (Fig. 2). Low-input land uses such as extensive cattle pasture have 24 25 now been joined in this part of Amazonia by more highly capitalized activities such as soybean cultivation. "Grilagem" (illegal appropriation of public land by large 26 actors) and invasion of land by organized landless squatters ("sem terras") have 27 28 continued to spread, especially in areas that are not yet part of the arc of 29 deforestation. In addition, prices of commodities such as soybeans have strongly influenced the pace of deforestation (Barreto et al. 2008; Kaimowitz et al. 2004; 30 Morton et al. 2006; Nepstad et al. 2006a). Deforestation rates in Brazilian Amazonia 31 as a whole declined from 2004 through 2012, with yearly rates being closely 32 correlated with commodity prices through 2008; thereafter rates and prices diverged 33 34 when the decline in deforestation continued despite rising prices (Assunção et al. 2012; Barreto et al. 2011; Hargrave and Kis-Katos 2011). Among government 35 control efforts that could explain the change in 2008, the most effective is believed to 36 be the policy of Brazil's Central Bank introduced that year blocking loans from 37 government banks to landowners with unpaid fines for environmental violations 38 (BACEN Resolution 3.545/2008). Nevertheless, in 2013 deforestation rates in Legal 39 40 Amazonia rose by 29% (Brazil, INPE 2014), and preliminary data indicate they rose further in 2014 (Fonseca et al. 2014). 41

42 43

44

[Figure 2 here]

The Brazilian government plans to build a series of infrastructure projects in Amazonia under its Program for the Acceleration of Growth (PAC). Among these is completion of the Jirau and Santo Antônio hydroelectric dams on the Madeira River upstream of Porto Velho (capital of Rondônia state) and reconstruction and paving of Highway BR-319 connecting Porto Velho to Manaus (capital of Amazonas state)

(Fearnside et al. 2009a; Viana et al. 2008). The construction phase of these dams has 50 attracted approximately 100,000 people to Rondônia and may further exacerbate 51 pressure on arable land there (Fearnside 2014). New forest lands are no longer 52 available in the arc of deforestation and arable land is limited under Amazonian 53 forest. Reopening Highway BR-319 would cause a new migratory flow from the arc 54 55 of deforestation to central and northern Amazonia (Fearnside and Graça 2006; Viana et al. 2008). BR-319 was the main channel for migration to Roraima from 1975 until 56 it was closed in 1988 due to lack of maintenance. 57

Migration to Roraima over the past decades has mainly been from people 58 59 coming up the Amazon River by boat to Manaus and continuing on via Highway BR-174 to Roraima. This migration flow, plus that from Amazonas state (mostly 60 from the Manaus area), would be little affected by opening Highway BR-319, in 61 contrast to migration coming down the Madeira River from Rondônia. Of those 62 arriving in Roraima from other states over the 1991-1996 period, only 5.2% came 63 64 from states that would contribute to flows via BR-319, while 94.8% came from other states (Brazil, IBGE 2010). Migration flows from Amazonas state (5.9% of the 1991-65 1996 total moving to Roraima from other states) would be little affected. Other states 66 with little expected effect are Maranhão (32.8%), Pará and Amapá (23.5%), 67 Northeastern states other than Maranhão (12.7%), and the South and Southeast 68 regions plus Goiás, Tocantins and the Distrito Federal (9.8%). The relatively small 69 migration via the Madeira River is what would be transformed by opening BR-319, 70 presumably in proportions similar to those in the 1991-1996 period. Of presumed 71 Madeira-River migrants, 53.0% came from Rondônia, 12.9% from Acre, 22.8% from 72 Mato Grosso and 11.3% from Mato Grosso do Sul. The percentage of migrants that 73 74 BR-319 would bring from Rondônia may be higher, since some of the historical 75 migration from Mato Grosso and Mato Grosso do Sul probably reached Roraima via 76 the Amazon-River route.

77 Rondônia's population more than doubled between the 1980 and 1991 78 censuses, with an annual net migration rate that was only surpassed by Roraima 79 among the nine states in Brazil's Legal Amazonia region (Fig.1a). Between 1991 and 80 2000 Roraima continued to experience strong net migration, while in the case of Rondônia the pattern reversed dramatically, with the state having a slight negative 81 net annual migration rate, meaning that it had become a source of migrants (Perz et 82 al. 2005, p. 33). Rondônia is a state with many settlement projects for small farmers. 83 These areas begin with one family in each plot of land but soon enter a process 84 where wealthier newcomers buy lots from the original settlers, often obtaining 85 86 several lots in the names of different family members and managing the land as a medium or large cattle ranch (e.g., Fearnside 1984). For example, in the settlement at 87 Apuí, in southern Amazonas state (an area where much of the current population has 88 come from Rondônia due to road access from that state), as many as 38 lots are 89 owned by a single family (Carrero and Fearnside 2011). The process of lot 90 consolidation causes colonist families to sell their land and move to more-distant 91 frontiers, both from the "push" of rising land prices in older settlements and from the 92 93 "pull" of opportunities to obtain larger areas of cheap land elsewhere.

This process has been repeated on successive frontiers throughout Brazilian
Amazonia over the past half century (e.g., Browder et al. 2008, Ludewigs et al.
2009). Its likely continuation guarantees a source of future rural-to-rural migration.
Migration in Brazil is generally rural-to-rural, rural-to-urban or urban-to-urban, but
not urban-to-rural. In Rondônia, hotspots of migration spring up regularly, with
many migrants arriving from other parts of the state in response to rumors of

available land (Caviglia-Harris et al. 2013). The currently rumored El Dorado among 100 farmers in Rondônia is "Realidade," which is a spontaneous settlement located in 101 Amazonas state near the northern end of the passible portion of Highway BR-319 102 (personal observation). If BR-319 were to be opened to traffic all the way to Manaus, 103 104 it is likely that southern Roraima would suddenly take on the role of rumored 105 paradise for land-seekers in Rondônia. Those who respond to the opportunity of 106 newly opened areas include both those who sell land in older settlements and those who have no land. Organized landless farmers (sem terras) represent a significant 107 108 factor in population movements in Amazonia (Perz et al. 2010; Simmons et al. 109 2010).

Southern Roraima has over 70,500 km² of primary forests (Supplementary 110 Online Material) that are accessible from Manaus via Highway BR-174 (Manaus-111 Boa Vista). The region could attract much of the migratory flow that is expected if 112 BR-319 is reconstructed. Low land prices compared to those in the arc of 113 deforestation and more fertile soil as compared to the Manaus area are strong 114 attractions. Low population density represents an additional attraction: as of 2010, 115 Roraima had only 451,000 inhabitants, of whom 284,000 (63%) were living in the 116 capital city of Boa Vista (Brazil, IBGE 2013a). This equates to an average density of 117 2 inhabitants per km², but density falls to 0.7 inhabitants/km² if the capital city is 118 excluded. In addition, Roraima is located in the far north of the country, thereby 119 providing comparative advantages such as access to external markets via ports in 120 121 Venezuela and Guyana.

These facts could cause increases in deforestation and environmental 122 degradation, as shown by a similar case in the recent past resulting in a large influx 123 124 to Roraima. In the period between 1995 and 1997 a total of 23 settlement projects was created in Roraima (Brazil, INCRA 2007). Of these, 16 are in the southern 125 126 portion of the state where they have attracted more than 50,000 migrants from other parts of Brazil (Brazil, IBGE 2008; Diniz and Santos 2005). The settlements were 127 128 established as part of a state government effort to recover population after a halting of gold mining in 1990 caused loss of inhabitants (AMBITEC 1994; Diniz and 129 130 Santos 2005). Part of the advance of settlement projects was due to paving Highway BR-174 and part from paving BR-210 (Northern Perimeter Highway) over the 1995-131 1997 period. These highways served as access routes to newly created settlement 132 projects and for transport of products to markets in Manaus and Boa Vista (Fig. 2, 133 part 1). 134

The effect of Amazonian roads on deforestation is not a mere theoretical 135 possibility: it has been demonstrated in studies linking road construction and 136 deforestation increase with increasing migration (e.g., Laurance et al. 2001; Sawyer 137 1984; Soares-Filho et al. 2004). Since Roraima is located at the "end of the chain" of 138 migration (imagining links of a chain connecting the arc of deforestation to 139 Roraima), relatively few migrants have arrived as compared to points that are closer 140 to the migration source. This has caused a sort of "repressed demand" in Roraima, 141 142 and reopening BR-319 could make the stronger migration wave move to the end of 143 the chain. Moreover, measures to curb deforestation from BR-319, such as creation of protected areas, are limited to the strip along BR-319 itself (e.g., Fearnside et al. 144 2009a). 145

Our goal in the present paper is to examine effects on deforestation in
southern Roraima in what is likely to be a critical case in Brazil's development plans
for Amazonia. We simulate deforestation under four scenarios between 2007 and
2030 and estimate resulting carbon emissions. The environmental impact study for

reconstructing Highway BR-319 gives no consideration to impacts beyond the strip 150 on either side of the road between Porto Velho and Manaus (UFAM 2009; see 151 Fearnside and Graça 2009). Ignoring effects beyond what government authorities 152 define as the "region of direct impact" is a generic problem in environmental impact 153 assessment and licensing in Brazil and elsewhere. Our research is intended to answer 154 155 the question of what effects re-opening Highway BR-319 could have on deforestation and loss of other original vegetation in southern Roraima. Effects stem 156 from migrants continuing their journeys beyond the end of BR-319, which terminates 157 in Manaus, Amazonas, approximately 550 km to the south of the study area. We also 158 159 consider the extent to which creating additional protected areas might reduce forest loss in the study area. 160 161

162 Methodology

163

164 Study Area

165 Our study area encompasses five municipalities in southern Roraima: 166 Caracarai, Rorainópolis, São Luiz do Anauá, São João da Baliza and Caroebe, with 167 an area of 98,955 km², or 44.1% of the total area of Roraima (Fig. 2). The region is 168 crossed from north to south by Highway BR-174 and from east to west by Highway 169 BR-210. Southern Roraima had 60,980 inhabitants in 2007, approximately 48% of 170 whom were living in the countryside (Brazil, IBGE 2010). Cumulative deforestation 171 totaled 3723 km² by 2007, representing 3.7% of the total area of southern Roraima 172 and about 5% of the remaining forest areas in this part of the state (Brazil, INPE 173 174 2014). Southern Roraima includes the Jauaperi National Forest (FLONA) and the Wai-Wai Indigenous Land (Fig. 2). 175

- Model Rationale, Implementation and Testing
- 177 178 179

180

176

The AGROECO Model

To simulate deforestation and to create future scenarios we used the 181 AGROECO model developed by Fearnside et al. (2009a) in DINAMICA-EGO 182 software (Soares-Filho et al. 2002, 2014). Each iteration of the AGROECO model 183 creates an area of accessible forest (Fig. 3). Accessible forest is a buffer around 184 existing roads and previous clearings. Accessible area and subsequent deforestation 185 expand as new roads are built by the software's road-building module 186 (Supplementary Online Material). The accessible forest surface is composed of a 187 strip of pre-defined width (2 km in this case) on each side of all roads built in the 188 model. In AGROECO, unlike demand-driven models, the amount of deforestation 189 (and not only its location) responds to presence of transportation infrastructure 190 (Fearnside et al. 2009a; Yanai et al. 2012). 191 192

- [Figure 3 here]
- 194195 Schedule of Planned Roads
- 196

193

In all study scenarios, major roads were built according to the government of
Roraima's official road-paving timeline. Secondary roads were mapped using the
multiple criteria evaluation (MCE) tool in DINAMICA-EGO. Probable dates for

200 constructing main roads were based on official plans (Brazil, Ministério da Defesa C. 2001, pp 75-76; Roraima 2009). Planned roads totaled 867 km, making 1,040,400 ha 201 of forest available for deforestation during the simulations (Table 1). 202 203 [Table 1 here] 204 205 Static and Dynamic Variables 206 207 Static variables are factors that do not change in value over the course of a 208 209 simulation. We used maps of altitude (Brazil, SIPAM 2008), slope (derived from SRTM data: Brazil, EMBRAPA 2013), soils (Brazil, IBGE 2013b; Brazil, Projeto 210 RADAMBRASIL 1973-1983) and vegetation (Brazil, IBGE 2013b; Brazil, Projeto 211 RADAMBRASIL 1973-1983). We also used maps of indigenous lands and 212 conservation units (Brazil, IBGE, 2013b), rivers (Brazil, SIPAM 2008), settlement 213 projects (Brazil, INCRA 2007) and the initial (1998) network of major and 214 secondary roads (Brazil, SIPAM 2008; updated by the authors to 2007 from 215 LANDSAT-TM images). 216 Dynamic variables are those whose values change over the course of a 217 218 simulation. These included distance to major roads and distance to secondary roads (new major roads are built according to an official schedule and construction of 219 endogenous secondary roads is simulated in the model). Other dynamic variables 220 were distance to available land, distance to deforestation and distance to forest, 221 distance to settlement projects and distance to indigenous lands and conservation 222 units (affected by changes in the status of land as a settlement project or as a 223 224 conservation unit). Historical deforestation data were used to test the model's efficiency in 225 226 allocating deforestation to sites where it is most likely to occur (depending on factors that promote or inhibit clearing). We also tested the model's performance in not 227 228 allocating deforestation to locations where it has little or no likelihood of occurring (infertile soils, hill tops, flooded areas, and areas far from road infrastructure) (Barni 229 230 2009). 231 232 Spatial Data Input to the Model 233 234 The model uses as input data land-use maps based on LANDSAT-TM satellite images for 2004 and 2007 (Fig. 4). Maps of weights of evidence and of 235 transition probabilities are calculated from these maps to calibrate the model 236 (Supplementary Online Material). In the case of categorical variables, coefficients of 237 weights of evidence are calculated from the vulnerability or lack of vulnerability of 238 each class to deforestation. For classes favorable to deforestation, the model assigns 239 positive coefficients, while classes that are not favorable receive negative 240 coefficients. In the case of continuous variables, the model creates bands of distances 241 from the variable of interest (for example roads) and assigns coefficients of weights 242 243 of evidence for each distance range according to favorability for deforestation. 244 [Figure 4 here] 245 246 Weights of Evidence 247 248 Weights of evidence are based on the Bayesian conditional probability 249

method (Supplementary Online Material). In modeling dynamics of land-use and 250 land-cover change, weights of evidence are applied to calculate a posteriori 251 probabilities. In the case of deforestation, we have a priori knowledge of locations 252 with conditions that are favorable to deforestation. Land-use maps and the static and 253 dynamic variables were combined in this modeling step in a DINAMICA-EGO sub-254 255 model for calculating weights of evidence (Fig. 5). For example, the transition probability for a given cell "i" changing from one state (e.g., forest) to another (e.g., 256 deforestation) over a period of time is evaluated as a function of its distance to 257 deforestation or to the forest edge and distance to the road network. Probability of 258 259 transition of a cell "i" is also evaluated in terms of its location when it is tested in relation to static variables such as soil type and initial vegetation. 260

[Figure 5 here]

In each iteration (representing a year), all model cells are examined or tested with respect to all variables; all odds are cumulative. Depending on its location and variable values favoring deforestation, a cell's transition probability can increase. A cell located far from a road network and from deforestation has decreased transition probability.

Weights of evidence can be either positive (favoring deforestation) or negative (inhibiting deforestation). Weights of evidence are recalculated in each iteration; they consider total available forest area resulting from incorporating newly created roads into the current road network. Major roads are scheduled to be built at predetermined steps or iterations of the simulation (Table 1).

274 275

276

261

262 263

Patcher and Expander Functions

277 DINAMICA-EGO uses local rules for its cellular automata transition 278 algorithm mechanism, which is composed of two complementary functions: 279 "Patcher" and "Expander" (Supplementary Online Material). The Patcher function 280 searches for cells around a site chosen for a transition and forms new patches of deforestation through a seeding mechanism. This is done first by choosing the central 281 cell of a new patch of deforestation and then selecting a specific number of cells 282 around the central cell according to its transition probability P $(i \rightarrow j)$, calculated 283 from weights of evidence. The Expander function causes expansion of pre-existing 284 patches of a given class such as deforestation. In Expander a new spatial transition 285 probability P $(i \rightarrow j)$ depends on cell numbers of type "i" around a cell of type "i". 286 For building scenarios we used the following transitions: forest to deforestation $(3 \rightarrow$ 287 1), deforestation to regeneration $(1 \rightarrow 2)$ and regeneration to deforestation $(2 \rightarrow 1)$. 288

289 290

Scenario Assumptions

291

In simulating deforestation, two scenarios were considered when assuming no reconstruction of Highway BR-319. The first scenario is "business as usual," called "BAU1"; it is used as a baseline simulation. The second is a "conservation" scenario called "CONSERV1"; it assumes establishment of conservation areas. Additionally, two similar scenarios ("BAU2" and "CONSERV2") assumed reconstruction of Highway BR-319 in 2011, an officially announced start date that has since been delayed. Scenario assumptions are summarized in Table 2.

300	[Table 2 here]
301	
302	Proposed Conservation Units and Planned Roads
303	
304	Deforestation containment policies were simulated in both conservation
305	scenarios: CONSERV1 (without BR-319) and CONSERV2 (with BR-319). To this
306	end, scenarios were simulated with creation of three conservation units; in these
307	scenarios any planned roads that would have had destinations inside these
308	conservation units were withdrawn from the model. Conservation units proposed in
309	the conservation scenarios totaled approximately 695,000 ha. Shapes and locations of
310	conservation units were planned to enable connectivity with existing conservation
311	units (Ferreira and Venticingue 2007). As an imposition of the model there is no
312	deforestation inside proposed conservation units during simulations. Conservation
313	units that already existed at the beginning of the simulation have further construction
314	of endogenous roads blocked within their borders, thus reducing but not totally
315	eliminating deforestation in these units.
316	Three conservation units were proposed because three large deforestation
317	fronts were detected threatening these blocks of intact forest (Fig. 6). Each
318	conservation unit was designed to encompass all of a threatened forest block in order
319	to contain future deforestation threats. Proposed conservation units were designed so
320	that they would fit into the set of protected areas that were already present
321	(indigenous lands, national forests and biological reserves)
322	(margenous ranas, national forests and offoregreat reserves).
323	[Figure 6 here]
324	
325	Calibrating the AGROECO Model
326	
327	The AGROECO model was calibrated from calculations of forest-to-
328	deforestation transition rates derived from PRODES land-use maps for the study area
329	from 2004 and 2007 (Brazil, INPE 2014). BAU1 was considered to be a baseline and
330	served as a reference for other scenarios. This followed historical deforestation rates
331	for southern Roraima (Barbosa et al. 2008)
332	for southern Roranna (Darbosa et al. 2000).
332	Calculation of transition rate is done according to Equation (1) :
332	Calculation of transition face is done according to Equation (1).
335	Basic annual rate = $((Deforestation_{2007}) - Deforestation_{2004})/Forest_{2004})/3$ (1)
336	Duste annual face = ((Deforestation(2007)) Deforestation(2004))/Torest(2004))/Torest(2004)/Tor
330	where "basic annual rate" is derived from land-use maps from 2004 and 2007
338	The basic annual rate was multiplied by the annual rate of planned road
330	building in iterations where construction of roads was scheduled. Calculation of the
340	annual rate of planned road building is given by Equation 2.
340	annual face of planned foud building is given by Equation 2.
341	Annual rate of planned road building = $(AAFFR/AAF_{4,1}) + 1$ (2)
342	(2),
343 344	where AAFFR, is "area of available forest from roads" at time "t" and $AAF_{4,1}$ is
345	"area of available forest" at time "t-1".
346	The annual rate of planned road building reflects an increase in the
347	probability of deforestation in subsequent iterations as a result of a road being built
348	This is due to the assumption of increasing human pressure on this accessible area
349	This rate was used in all scenarios in iterations with planned roads.
-	rame rames

For BAU2 and CONSERV2, both of which assume reconstruction of BR-319 350 in 2011, a "migration factor" was used in addition to the rates described for scenarios 351 352 without BR-319. Subsequent postponements have delayed the officially programmed 2011 reconstruction date, but model results apply equally well to the period after 353 reopening BR-319 whenever it occurs. The model's migration factor (Equation 3) 354 355 simulated increased deforestation by expected migrants to the region after rebuilding BR-319: 356 357 358 Migration factor = $DRSP_{(95/97)}$ /Basic annual rate (3),359 where: DRSP_(95/97) is "deforestation rate in settlement projects" for those projects 360 created between 1995 and 1997. This rate is derived from observed deforestation in 361 southern Roraima between 1996 and 2001, which represents the period after creating 362 the settlement areas in question. "Basic annual rate" is that calculated by Equation 1. 363 Donating land and creating settlement projects by the state government 364 during this period stimulated a large migratory flow to southern Roraima (Brazil, 365 IBGE 2008; Diniz and Santos 2005). The calculated migration factor was three and 366 was applied from 2013 onwards. We assumed that road construction serves as 367 infrastructure providing access to land in settlement projects; this process increases 368 deforestation (Alves et al. 1992; Brandão Jr. and Souza Jr. 2006). 369 370 Rate calculations presented above were performed in a non-spatial numerical model using Vensim® software (Ventana Systems, Inc. 2012). Resulting values were 371 made available in the corresponding iteration of the DINAMICA-EGO model 372 through a lookup table (Soares-Filho et al. 2004). In each iteration, rates were 373 calculated in the Vensim model. Rates are passed to the AGROECO spatial model 374 375 (in the 32-bit version of DINAMICA-EGO) via a link coupling these two models to obtain deforestation for that year (Fearnside et al. 2009a). 376 377 378 Validating the AGROECO Model 379 380 Validation compared maps of simulated deforestation from 2004 to 2007 in the baseline scenario with observed deforestation in 2007 (Fig. 7). We used the fuzzy 381 method (Hagen 2003) as modified by Soares-Filho et al. (2014), which uses an 382 increasing number of cells in "windows" (5×5 to 31×31 cells) applied to the maps. 383 384 This method considers similarity index values $\geq 50\%$ sufficient for model validation. The similarity index value obtained was 54.7% for our simulation model in a 385 window of 7×7 cells. 386 387 [Figure 7 here] 388 389 390 Impact on carbon emissions 391 **Estimation of Original Vegetation Biomass** 392 393 To estimate emissions one must know carbon stocks in original vegetation 394 biomass. For forest ecosystems, below-ground and above-ground carbon stocks 395 (excluding soil carbon) were taken from the map of biomass density in Amazonia 396 397 developed by Nogueira et al. (2008) using RADAMBRASIL inventories (Brazil, 398 Projeto RADAMBASIL 1973-1983). For two non-forest ecosystems ("campina" and savanna), we used studies by Barbosa and Ferreira (2004) and Barbosa and Fearnside 399

400 401 402	(2005). For root biomass estimation in non-forest ecosystems we used a root/sh ratio of 2.81 (R.I. Barbosa pers. comm.; see Barbosa et al. 2012). Calculations of done as map-algebra operations in ArcGis software using the average density of	oot were f
402	biomass for each man class and the man of land use in 2007. To obtain areas	L
403	occupied by each forest type, a multiplication was performed between a binary	man
404	of forest classes (Class 1) and the man of biomass classes (Classes 1 to 15). The	пар
405	totals of these group were obtained by summing the number of pixels in each all	
400	and multiplying by the area of each pixel (6.25 he). Total amount of hismass	155
407	remaining in southern Dersime in 2007 was obtained by summation of the area	(\mathbf{h}_{α})
400	compared by each forest type multiplied by its respective system and biomass in	(11a)
409	beccupied by each infest type infinited by its respective average biomass in magnetized (tons) per bectere (Mg ha^{-1}). These estimates of above, and below	
410	ground biomass (including nearonass) were then converted to carbon stocks (T	abla
411	ground biomass (including necromass) were then converted to carbon stocks (1	able
412	<i>5)</i> .	
413	[Table 2 here]	
414		
415	Estimation of Secondamy Vacatation Diamaga	
416	Estimation of Secondary Vegetation Biomass	
417	For estimation of secondary vegetation biomass simulated in the second	og for
418	For estimation of secondary vegetation biomass simulated in the scenari	os for
419	2030 we used the method developed by Fearnshie and Guimaraes (1996).	
420	Composition of simulated secondary vegetation in annual landscapes was deter	minea
421	taking into account the relative abundance of secondary forests in 2030. This w	as
422	calculated based on residence time for secondary vegetation cells in the landsca	ipe
423	(Almeida et al. 2010). Rates for clearing secondary vegetation and for regrowth	
424	for the scenarios were 22% and 4.5%, respectively (Ferraz et al. 2005; Soares-F	filho
425	et al. 2004). Simulated secondary vegetation was added to other types of land c	over
426	to form the replacement landscape; at the end of the simulation in 2030 the land	iscape
427	was /5.6% pasture, 9.3% agriculture and 15.1% secondary forest.	
428		
429	Estimation of Carbon Emissions	
430		05
431	Forest biomass was converted to carbon using a conversion factor of 0.4	-85
432	(Silva 2007). For the deforested area, the carbon content of secondary vegetation	n
433	biomass used in calculating carbon stock in the equilibrium landscape was	
434	considered to be 45% of the dry weight (Fearnside 1996, 2000). Thus:	
435		
436	Tons $C_{(forest)} = 1$ ons forest biomass $\times 0.485$	(4),
437		
438	where "tons $C_{(forest)}$ " is estimated carbon contained in biomass in tons (Mg); "T	ons
439	forest biomass" is total biomass (oven-dry weight) found in forest.	
440		(-)
441	Tons $C_{(sec. veg.)}$ = Tons secondary vegetation biomass × 0.450	(5),
442		
443	where "Tons $C_{(sec. veg.)}$ " is estimated carbon contained in biomass in tons (Mg);	"Tons
444	secondary vegetation biomass" is total dry weight of biomass found in secondar	ry
445	vegetation.	
446	Emissions estimates for each scenario generated by deforestation up to 2	2030
447	were calculated from the loss of carbon stocks in forests that were present in 20	07,
448 449	after deducting carbon in replacement vegetation. Thus, following Fearnside et (2009b), net carbon emission is given by:	al.

- 450
- 451 $\Delta C_{(\text{Scenario})} = A \times (C_{2030} C_{2007})$

452 453 where: " $\Delta C_{(Scenario)}$ " is net carbon emission (MgC) from deforestation between 2007 454 and 2030 for each scenario, after deducting the average carbon stock in the landscape 455 that replaces forest (cf, Fearnside 1996); "A" is area (ha) deforested during the 456 period; " C_{2007} " and " C_{2030} " represent the carbon stocks in the landscape in Mg in 457 2007 and 2030.

458 Our carbon emission estimates only include emissions from clearing forest 459 biomass, minus uptake by biomass in the replacement landscape. The estimates 460 exclude changes in soil carbon stocks and losses to forest degradation from logging, 461 fire and climate change impacts. Ecophysiological processes are excluded, as are the 462 carbon-equivalents of trace-gas emissions.

463 464

Results and Discussion

465 466

467

Model Validation

468 "Validation," or comparison of model behavior with real-world observations, provides essential information for judging the realism of modeled results. We 469 validated our model through simulation runs between 2004 and 2007 using as inputs 470 471 the 2004 land-use map and the calibration parameters for BAU1 (without BR-319). The model-generated 2007 map was compared with the land-use map for 2007 472 provided by the National Institute for Space Research (Brazil, INPE 2014). The 473 474 comparison used the reciprocal similarity technique (Soares-Filho et al. 2014). Importantly, this approach makes comparisons of maps of differences, i.e., maps of 475 476 simulated deforestation in a period and not of cumulative deforestation (Soares-Filho 477 pers. comm.).

478 No general rule exists for calibration and validation of models (Mazzoti and 479 Vinci 2007). Validation should demonstrate that a model has, within its domain of 480 applicability, a satisfactory range of accuracy consistent with the model's intended application. This demonstration shows that the model would be suitable for use in a 481 particular context but, by itself, does not mean that this is the best model (Rykiel 482 1996). Validation continues to be subject to a variety of different approaches: "There 483 is not, and never will be, a totally objective and accepted approach to model 484 validation" (McCarl 1984). 485

486 487

Biomass and Carbon Sequestration by Simulated Secondary Vegetation

488 The percentage of secondary vegetation derived from degraded pasture in our 489 simulated landscapes (15.1% of total area deforested) is similar to the percentage 490 (13%) found by Ferraz et al. (2005) under future scenarios in Rondônia. In an 491 estimate for Amazonia as a whole in 2003, Ramankutty et al. (2007) used a Markov 492 493 matrix to calculate that secondary vegetation occupied approximately 32% of the total area deforested. Recent studies applying remote-sensing techniques estimate 494 that this type of vegetation occupies between 19 and 28% of the deforested portion of 495 496 Brazilian Amazonia (Almeida et al. 2010; Carreiras et al. 2006; Neeff et al. 2006). 497 Close agreement of our results with data in the literature suggests that this methodology can be used in future work to model dynamics of land-use and land-498 499 cover change to obtain more "realistic" and reliable estimates of carbon in deforested

(6),

500	landscapes.
501	
502	Cumulative Deforestation under the Four Scenarios
503	
504	Figure 8 shows evolution of cumulative deforestation under the four
505	scenarios. Curves representing increase of deforested areas under BAU1 and
506	CONSERV1 scenarios without BR-319 have constant linear evolution over time,
507	similar to what is observed in Roraima currently (Barbosa et al. 2008). In Figure 8
508	one also notes a strong increase under BAU2 and CONSERV2 deforestation
509	scenarios due to application of a migration factor in the simulation model beginning
510	in 2013, with the rate of increment stabilizing after 2020.
511	
512	[Figure 8 here]
513	
514	BAU1 (baseline scenario) projects historical evolution of deforestation in the
515	region Planned construction of major roads and appearance of endogenous
516	secondary roads (which is automatic in the model) cause area deforested to almost
517	double in extent with a 92% increase between 2007 and 2030 (372 250 ha versus
518	715.250 ha
519	BAU2 (with BR-319) shows a possible trajectory in time and space of the
520	roads that are preconditions favorable to deforestation. These conditions combined
521	with probable migratory flow to Roraima provoked by re-opening BR-319 in 2011.
522	are simulated in the model by applying deforestation rates similar to those observed
523	in settlement projects in the recent past in Roraima. These rates were only applied
523	over a short time span (2013-2018) following a schedule of opening planned roads in
525	the future Under this scenario, reconstruction and paying of BR-319 occurs in 2011
526	and cumulative deforested area reaches 486 000 ha by 2030 an increase of 130.4%
520	(Table 4) The delay in reconstructing BR-319 can be expected to postpone these
528	increases in deforestation in Roraima by an equivalent number of years
529	noreuses in derorestation in Roralina og an equivalent number of years.
530	[Table 4 here]
531	
532	In CONSERV1 and CONSERV2 (without and with BR-319) an increase in
532	deforestation occurred throughout the area accessible via the pre-existing road
534	network which is where the settlement projects are located (Figs 9c and d). This
535	indicates that there would be an intensification of land use in these locations in
536	response to simulated conservation units having restricted forest availability for
537	clearing elsewhere CONSERV1 was the scenario with least deforestation with
538	cumulative area deforested reaching 654 513 ha in 2030, or a 75 6% increase over
530	that in the initial landscape in 2007
540	that in the initial fandscape in 2007.
5/1	[Figure 9 here]
541	[l'igure y here]
5/2	In the CONSERV2 scenario (with rebuilding Highway BR-319) cumulative
544	deforested area reached 775 888 ha in 2030 an increase of 108 2% over the
5/15	deforested area in the initial landscape in 2007. In spite of its being a conservation
546	scenario this scenario deforested 17.7% more than the baseline scenario without RD
547	319 (BAUI) In both conservation scenarios an increase occurred in invasion of
5/18	Jauaneri National Forest. This was more intense in CONSERV2 indicating that the
549	national forest (FLONA) had become an area of high anthropogenic pressure and

550 was acting as a "safety valve" for deforestation.

In the conservation scenarios, both in general and due to proposed 551 conservation units, a pattern of deforestation developed that was more homogeneous 552 and "compact," resulting in a landscape that was less fragmented by deforestation 553 than was the case under the two BAU scenarios. In both conservation scenarios there 554 555 was a greater "saturation" by deforestation. This was observed in our simulations 556 along Highway BR-174 and in the Anauá Directed Settlement Project near the Rorainópolis municipal seat and also along Highway BR-210 and on side roads near 557 the municipal seat. 558

559 560

561

Effect of Planned Roads on the Deforestation Pattern in Simulated Scenarios

562 Although both business-as-usual scenarios (BAU1 and BAU2) used the same 563 construction schedule for planned roads, in BAU2 (with BR-319) we used a 564 migration factor to simulate a more vigorous deforestation increase after 2012. Thus, the shape and the spatial distribution of deforestation in the two scenarios were 565 similar, the difference being in intensity of deforestation. BAU2 deforested 38.4% 566 more than BAU1, and CONSERV2 deforested 32.8% more than CONSERV1. The 567 fact that CONSERV2 (with BR-319) deforested 17.7% more than BAU1 (without 568 BR-319) does not mean that creating reserves is ineffective. Rather, it reflects the 569 severity of the effect of opening a road like BR-319 in terms of future deforestation 570 571 in a region with low governance, such as southern Roraima (e.g., Barni et al. 2012).

In general, planned roads accelerated deforestation for the simulated BAU 572 573 scenarios, as has been the predominant pattern when highways are opened in 574 Amazonia (Escada and Alves 2001; Nepstad et al. 2001; Soares-Filho et al. 2004, 2006). Planned roads leading to blocks of forest north of the Jatapú hydroelectric 575 576 dam (years 2014 and 2015) and to forest near the Branco River in the Caxias 577 Settlement Project in Caracaraí municipality (years 2012 and 2015), increased local 578 deforestation. The same effect was also seen east of Highway BR-174 (2011) in the 579 Ecuador Settlement Project (Figs. 9A and B).

580 The opposite effect, or deforestation failing to accompany planned road construction, was seen along some roads. This occurred in BAU1 (without BR-319) 581 along the planned road that would penetrate the forest block to the west of the Wai-582 Wai indigenous land (2013) as well as in Caracarai municipality and to the west of 583 the Anauá Directed Settlement Project (2013). This effect also occurred in both 584 scenarios on the road linking the Jauaperi River to Santa Maria do Boiuçú (2018) in 585 586 Rorainópolis municipality. In the case of the first two roads, this fact could be related to proximity of conservation units, low soil quality and little prior deforestation. 587 These factors decrease probability of deforestation in the simulations. Along the 588 access road to Santa Maria do Boiuçú, which crosses the Jauaperi River, low 589 deforestation could be explained by unfavorable terrain because this is in an area 590 591 subject to seasonal flooding (Fig.10).

592

593 594

596

[Figure 10 here]

595 Deforestation Processes

597 Likelihood of deforestation evolving continuously in southern Roraima at 598 rates similar to those observed currently without BR-319 is strengthened by the great 599 availability of forest areas to clear. Invasions of public land by squatters (*posseiros*) 600 and large land thieves (grileiros), illegal logging, high turnover of owners in 601 settlement projects and widespread advance of pasture over other forms of land use are already present in southern Roraima (Barni et al. 2012). These are factors that 602 contribute to uncontrolled deforestation and environmental degradation (Fearnside 603 604 2008; Soares-Filho et al. 2004). These facts alone would justify creating 605 environmental-protection areas (Ferreira et al. 2005; Nepstad et al. 2006b; Soares-Filho and Dietzsch 2008; Soares-Filho et al. 2010). This would be true even without 606 reconstruction of BR-319, as shown in CONSERV1 (without BR-319). 607

608 Considering the origin of actors who could arrive by road (Fearnside 2008; 609 Soares-Filho et al. 2004), their ability to destroy forest is greater than that of most migrants attracted to Roraima in the recent past (Mourão 2003). This means that we 610 are conservative in assuming constant per-capita contribution to deforestation as 611 indicated by historical patterns in southern Roraima. We believe that the model was 612 613 adequate to represent advance of deforestation in the study area over the time period of our analysis. We emphasize that this is not a simple extrapolation of rates of 614 deforestation, but involves several underlying factors with different levels and scales 615 (e.g., Brondizio and Moran 2012; Foley et al. 2007; Ludewigs et al. 2009). It reflects 616 the assumption of several factors acting simultaneously in decisions of actors, for 617 example concerning how much area to deforest annually, where to deforest 618 (favorable sites in terms of soil fertility, slope, etc.), when clearing occurs (as 619 influenced by the schedule for building road infrastructure), cutting secondary forest, 620 pasture maintenance, etc. It also assumes migratory movement (e.g., Soares-Filho et 621 al. 2004), simulates the government's deforestation-containment policies (creating 622 conservation units) (e.g., Yanai et al. 2012) and the opening of secondary roads that 623 624 directly influence these rates (e.g., Fearnside et al. 2009a). The model incorporates a wide range of land-use determinants and recognizes that spatial distribution of 625 626 population, opening of roads and land-use change are determined jointly and are 627 supported by an economic framework (e.g., Campari 2005; Chomitz and Gray 1996).

628 While the precise course of future deforestation in Roraima if BR-319 is rebuilt is inherently uncertain, past induced migratory responses are sufficiently 629 630 documented empirically that the deforestation in our simulated scenarios could well be what plays out in practice. Since the environmental impact study for BR-319 631 focused only on the roadside, thus assuming away any impacts in Roraima, our 632 scenarios offer a far better basis for cost/benefit evaluation than does the official 633 scenario. This matters not only for the road decision but also for decisions about 634 complementary options for protected areas. 635

636 Viewed in this light, our results may be seen in a framework like the one that 637 has long surrounded contingent valuation methodologies for assessing environmental value: nobody argues they are perfect but many argue they are more useful than 638 assuming a value of zero. In other words, our scenarios should not be viewed as what 639 'will happen,' but instead as showing that 'things like this could happen but are being 640 assumed away, and thus should be considered.' Such a framing is not surprising for a 641 dynamic analysis considering indirect effects, which are harder to study empirically 642 643 than are tightly bounded analyses of impacts of more limited scope. Tightly bounding analyses can appear to be "more accurate," which in one manner of speaking is correct, 644 but, in a larger scope they can actually produce less insight (Pfaff and Robalino 2012). 645 Looking ahead to consider when the world will not be like today is valid as an input for 646 647 policy making.

648

649 Resistance of Reserves to Invasion

- 650 The model assumption is that conservation units effectively deter 651 652 deforestation. While reserve invasions do, in fact, occur in Amazonia, we believe that this assumption is reasonable for the simulated period. A key factor justifying a 653 no-deforestation assumption is that the simulated reserves were created without any 654 655 prior deforestation inside their borders (e.g., Soares-Filho et al. 2010; Vitel et al. 2009). Where this is not true, deforestation likelihood is much greater. For example, 656 some deforestation occurred in our simulation in Jauaperi National Forest (FLONA) 657 during the 2004-2007 period because previous historical deforestation occurred in 658 659 and around this conservation unit.
- 660

662

661 Biomass and Carbon Emission in Simulated Scenarios

663 Simulated carbon emissions reached 56.4×10^{6} Mg in 2030 (Table 4) under 664 BAU1 (without BR-319), which represents continuing current deforestation patterns 665 under expected conditions in southern Roraima. Assumptions of BAU2 (with BR-666 319) led to high biomass carbon loss: 86.4×10^{6} Mg of biomass carbon were lost by 667 the end of a 23-year simulation. Considering biomass regrowth in replacement 668 vegetation, this gross loss corresponded to net committed emissions (Fearnside 1997) 669 of 80.3×10^{6} Mg of carbon.

670 Carbon loss differences between BAU1 and BAU2, representing the effect of 671 reconstructing BR-319, totaled 23.9×10^6 Mg of carbon at the end of 23 years. This 672 equals approximately five years of carbon emissions by greater São Paulo in 2003 673 (COPPE 2005) and approximately two years of carbon emissions by greater São 674 Paulo today.

675 CONSERV1 had the least deforestation by 2030, with an emission of 46.0×10^6 Mg of carbon. CONSERV2 emitted 67.2×10^6 Mg of carbon, or 19.1% more 677 than BAU1 (without BR-319) in 2030. BAU2 emitted 80.3×10^6 Mg of carbon.

678

680

679 Other Sources of Emission

Our paper only models deforestation, plus loss of small areas of non-forest 681 vegetation present in the area, and associated net emission from biomass loss. 682 Including other emission sources would increase total impact attributed to opening 683 Highway BR-319 and augment benefits of creating protected areas, but would not 684 685 alter our overall results. Soil carbon release in cleared areas would increase emissions in direct proportion to deforestation. Converting Amazonian forest to 686 cattle pasture under normal management releases an average of 7.5 MgC ha⁻¹ from 687 the top 20 cm of soil, plus 5.6 MgC ha⁻¹ from the 20-100-cm layer and 0.6 MgC ha⁻¹ 688 from the 1-8 m layer (Fearnside and Barbosa 1998). Carbon release from deeper 689 layers only occurs over a long time. 690

This paper only considers carbon emissions (i.e., carbon as CO_2). 691 Deforestation not only emits carbon as CO₂ but also trace gases such as CH₄ and 692 693 N₂O. Compared to carbon emissions without considering trace gases, including trace 694 gases would increase global warming impact of net committed emissions from deforestation by 11.5% for a 100-year time period and 26.3% for a 20-year period 695 (more relevant for avoiding a "dangerous" 2°C temperature increase). These 696 697 percentages (updated from Fearnside 2000) consider median emission factors for combustion from Andreae and Merlet (2001) and global warming potentials (with 698 feedbacks) from the Intergovernmental Panel on Climate Change fifth assessment 699

report (Myhre et al. 2013, p. 714).

701 In addition to deforestation, forest degradation through logging also releases 702 carbon. Since much logging is illegal, it typically takes place without "reduced impact" precautions. Emissions from such conventional logging are substantial since 703 704 many trees are killed in addition to those actually harvested. For example, committed 705 emission from biomass loss in conventional logging at a typical harvest intensity of 38 m³ ha⁻¹ in Paragominas, Pará was 30.9 MgC ha⁻¹, or 14.5% of the carbon stock 706 (above- and below-ground) in live and dead biomass (Veríssimo et al. 1992; see 707 708 Fearnside 1995, p. 316).

Fire also degrades forest and releases carbon. Logging substantially increases vulnerability of forest to fire (e.g., Alencar et al. 2006), as do continued increases of deforestation and pasture that provide initial ignition sources for forest fires. When fires occur, the magnitude of committed emissions is highly variable: percentages of above- ground live biomass released (including decomposition of trees killed by fire) have been estimated for different fires at 63% (Cochrane and Schulze 1999), 51% (Barlow et al. 2003), and 14.4% (Vasconcelos et al. 2013).

All additional emission sources add to impacts of deforestation processes
exacerbated by rebuilding BR-319. Conversely, they also add to the benefit of
avoiding the construction of this road.

720 Conclusions

719

721

Reconstructing Highway BR-319 would increase deforestation in the
southern portion of Brazil's Roraima state, a location far removed from Highway
BR-319 itself. Given our model assumptions, we estimate that deforestation would
increase between 18 and 42% by 2030. Simulated carbon emissions would increase
by a similar percentage, between 19 and 42%.

Under "business-as-usual" model conditions (BAU2), opening BR-319
implies an increase in emissions over a 23-year simulation totaling 23.9 million Mg
(tons) of carbon. For comparison, this represents approximately two years of carbon
emission by greater São Paulo today.

Our study showed that reconstructing BR-319, linking Manaus to Porto Velho, may have environmental impacts well beyond its official area of influence. Its effects can radiate to southern Roraima, which is already accessible by existing roads from the BR-319 roadhead in Manaus. These impacts should be considered in decision making on the BR-319 recuperation project. Mitigation measures that would reduce these impacts include creating conservation units in Roraima for areas most vulnerable to deforestation if BR-319 is rebuilt.

- 739 **References**
- Alencar AC, Nepstad D, Diaz MCV (2006) Forest understory fire in the Brazilian
 Amazon in ENSO and non-ENSO years: area burned and committed carbon
 emissions. Earth Interactions 10(6):1–17
- Almeida CA, Valeriano DM, Escada MIS, Rennó CD (2010) Estimativa de área de
 vegetação secundária na Amazônia Legal brasileira. Acta Amazonica 40:289302
- 748

738

740

Alves DS, Meira Filho LG, D'Alge JCL, Mello EK, Moreira JC, Medeiros JS (1992)

750	The Amazonia information system. ISPRS Archives, Commission VI 28, 259-
751	266. http://mtc-m12.sid.inpe.br/col/sid.inpe.br/iris@1912/2005/07.19.
752	23.23.44/doc/Isprs92-2.pdf. Accessed 7 July 2009.
753	
754	AMBITEC (Fundação do Meio Ambiente e Tecnologia de Roraima) (1994) O Brasil do
755	hemisfério norte: diagnóstico científico e tecnológico para o desenvolvimento.
756	AMBITEC, Boa Vista, Roraima, Brazil. 512 pp
757	
758	Andreae MO, Merlet P (2001) Emissions of trace gases and aerosols from biomass
759	burning. Global Biogeochem Cycles 15:955-966
760	
761	Assunção J, Gandour CC, Rocha R (2012) Deforestation slowdown in the Legal
762	Amazon: prices or policies? Climate Policy Initiative (CPI) Working Paper,
763	Pontífica Universidade Católica (PUC), Rio de Janeiro, RJ, Brazil. 37 pp.
764	http://climatepolicyinitiative.org/wp-content/uploads/2012/03/Deforestation-
765	Prices-or-Policies-Working-Paper.pdf. Accessed 18 September 2012
766	
767	Barbosa RI, dos Santos JRS, da Cunha MS, Pimentel T, Fearnside PM (2012) Root
768	biomass, root : shoot ratio and belowground carbon stocks in the open savannahs
769	of Roraima, Brazilian Amazonia. Austral Jour Bot 60:383-395.
770	https://www.academia.edu/Documents/in/Coarse_Root_Biomass.
771	nttp://dx.doi.org/10.10/1/B111312
//Z	Parhase DI Ecorrecide DM (2005) Above ground biomass and the fate of earbon often
//3 774	burning in the sevennes of Poreime Bregilien Amezonia Forest Feel Manage
774	216.205 216
775 776	210.295-510
770	Barbosa RI Ferreira CAC (2004) Biomassa acima do solo de um ecossistema de
778	"campina" em Roraima norte da Amazônia Brasileira Acta Amazonica 34:577-
779	586
780	500
781	Barbosa RI, Pinto FS, Souza CC (2008) Desmatamento em Roraima: dados históricos e
782	distribuição espaco-temporal. Relatório Técnico. Ministério da Ciência e
783	Tecnologia. Núcleo de Pesquisas de Roraima. Instituto Nacional de Pesquisas da
784	Amazônia (INPA), Boa Vista, Roraima, Brazil, 10 pp.
785	http://agroeco.inpa.gov.br/reinaldo/RIBarbosa ProdCient Usu Visitantes/2008
786	Desmatamento RR 1978 2006.pdf. Accessed 18 September 2012
787	
788	Barlow J, Peres CA, Lagan BO, Haugaasen T (2003) Large tree mortality and the
789	decline of forest biomass following Amazonian wildfires. Ecol Lett 6:6-8
790	
791	Barni PE (2009). Asfaltamento da Rodovia BR-319: efeito 'dominó' pode elevar as
792	taxas de desmatamento no sul do Estado de Roraima. Masters dissertation,
793	Instituto Nacional de Pesquisas da Amazônia (INPA) & Universidade Federal do
794	Amazonas (UFAM), Manaus, Amazonas, Brazil.
795	
796	Barni PE, Fearnside PM, Graça PMLA (2012) Desmatamento no Sul do Estado de
797	Roraima: padrões de distribuição em função de projetos de assentamento do
798	INCRA e da distância das principais rodovias (BR-174 e BR-210). Acta
799	Amazonica 42:195-204

800		
801 802	Barreto	P, Brandão Jr A, Martins H, Silva D, Souza Jr C, Sales M, Feitosa T (2011) Risco de desmatamento associado à hidrelétrica de Belo Monte. Instituto do
803 804		Homem e Meio Ambiente da Amazônia (IMAZON), Belém, Pará, Brazil. 98 pp. http://www.imazon.org.br/publicacoes/livros/risco-de-desmatamento-associado-
805 806		a-hidreletrica-de-belo-monte/at_download/file. Accessed 18 September 2012
807	Barreto	P, Pereira R, Arima E (2008) A pecuária e o desmatamento na Amazônia na era
808 809		das mudanças climáticas. Instituto do Homem e Meio Ambiente da Amazônia (IMAZON) Belém Pará Brazil 40 pp.
810		http://www.imazon.org.pr/publicacoes/livros/a-pecuaria-e-o-desmatamento-na-
811		amazonia-na-era-das/at_download/file_Accessed 18 September 2012
812		
813	Brandâ	io Jr A. Souza Jr C (2006) Desmatamento nos assentamentos de reforma agrária
814 815		na Amazônia. O estado da Amazônia. Instituto do Homem e Meio Ambiente da Amazônia (IMAZON) Belém Pará Brazil 4 pp
816		http://www.imazon.org.br/publicacoes/o-estado-da-amazonia/desmatamento-
817		nos- assentamentos-de-reforma-agraria/at_download/file_Accessed 16
818		Sentember 2012
810 810		September 2012
820	Brazil	FMBRAPA (2013) Brasil em relevo. Empresa Brasileira de Pesquisa
821	Diuzii,	Agropecuária (EMBRAPA) Brasília DE Brazil
822		http://www.relevobr.cnpm.embrana.br/download/_Accessed 19 September 2013
823		http://www.ielevoor.enpin.emorupu.or/dowinoud/. recessed 19 September 2015
824	Brazil.	IBGE (2008) Sistema IBGE de Recuperação Automática-SIDRA. Instituto
825	210211,	Brasileiro de Geografia e Estatística (IBGE). Rio de Janeiro, RJ, Brazil.
826		http://www.sidra.ibge.gov.br/. Accessed 28 July 2008
827		
828	Brazil,	IBGE (2010) Instituto Brasileiro de Geografia e Estatística (IBGE), Rio de
829		Janeiro, RJ, Brazil. http://www.sidra.ibge.gov.br/ Accessed 24 September 2010
830		
831	Brazil,	IBGE (2012) Manual técnico da vegetação brasileira (Manuais Técnicos em
832		Geociências no 1). 2ª Edição revista e ampliada. Fundação Instituto Brasileiro de
833		Geografia e Estatística, Rio de Janeiro, RJ, Brazil. 271 pp.
834		ftp://geoftp.ibge.gov.br/documentos/recursos_naturais/manuais_tecnicos/manual
835		_tecnico_vegetacao_brasileira.pdf. Accessed 21 September 2014
836		
837	Brazil,	IBGE (2013a) Notícias Censo 2010. Instituto Brasileiro de Geografia e
838		Estatística (IBGE), Rio de Janeiro, RJ, Brazil. http://noticias.uol.com.br/censo-
839		2010/populacao/rr. Accessed 17 October 2013
840		
841	Brazil,	IBGE (2013b) Base cartográfica contínua do Estado de Roraima 100.000.
842		Instituto Brasileiro de Geografia e Estatística (IBGE).
843		ftp://geoftp.ibge.gov.br/mapeamento_sistematico/base_vetorial_continua_escala
844		_100mil/. Accessed 25/09/2014.
845	_	
846	Brazil,	INCRA (2007) Diretoria de Obtenção de Terras e Implantação de Projetos de
847		Assentamento–DT. Instituto Nacional de Colonização e Reforma Agrária
848		(INCRA), Ministério do Desenvolvimento Agrário (MDA), Brasília, DF, Brazil
849		

850 851 852	Brazil, INPE (2014) Monitoramento da floresta amazônica brasileira por satélite. Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, São Paulo, Brazil. http://www.obt.inpe.br/prodes/. Accessed 19 September 2014
853 854 855 856 857 858	Brazil, Ministério da Defesa (C. 2001) Estado de Roraima: plano estratégico de desenvolvimento regional; sistematização das ações executivas para o período 2001/2010. Ministério da Defesa, Secretaria de Política, Estratégia e Assuntos Internacionais, Departamento de Política e Estratégia, Brasília, DF, Brazil.
859 860 861 862	Brazil, Projeto RADAMBASIL (1973-1983) Levantamento dos recursos naturais (Folhas SA.20 Manaus; SA.21 Santarém; SB.19 Juruá; SB.20 Purus; SC.19 Rio Branco; SC.20 Porto Velho). Ministério das Minas e Energia, Rio de Janeiro, RJ, Brazil.
863 864 865 866	Brazil, SIPAM (2008) Sistema de Proteção da Amazônia. Sistema de Proteção da Amazônia (SIPAM), Manaus, Amazonas, Brazil. http://www.sipam.gov.br/. Accessed 18 September 2012
868 869 870 871	Brondizio ES, Moran EF (2012) Level-dependent deforestation trajectories in the Brazilian Amazon from 1970 to 2001. Popul Environ 34:69-85. http://dx.doi.org/10.1007/s11111-011-0159-8
872 873 874 875 876	Browder JO, Pedlowski MA, Walker R, Wynne RH, Summers, PM, Abad A, Becerra- Cordoba, N, Mil-Homens J (2008) Revisiting theories of frontier expansion in the Brazilian Amazon: a survey of the colonist farming population in Rondônia's post-frontier, 1992–2002. World Devel 36:1469–1492. http://dx.doi.org/10.1016/j.worlddev.2007.08.008
877 878 879	Campari J (2005) The economics of deforestation in the Amazon: dispelling myths. Edward Elgar, Northampton, Massachusetts, USA.
880 881 882 883	Carneiro-Filho A (2005) Temos um esplêndido passado pela frente? In Torres M (ed), Amazônia revelada: os descaminhos ao longo da BR-163. Conselho Nacional de Pesquisa Científica e Tecnológica (CNPq), Brasília, DF, Brazil. pp 185-200
884 885 886 887 888	Carreiras JMB, Pereira JMC, Campagnolo ML Shimabukuro YE (2006) Assessing the extent of agriculture/pasture and secondary succession forest in the Brazilian Legal Amazon using SPOT vegetation data. Remote Sensing Environ 101:283-298
890 891 892 893	Carrero GC, Fearnside PM (2011) Forest clearing dynamics and the expansion of land holdings in Apuí, a deforestation hotspot on Brazil's Transamazon Highway. Ecology and Society 16(2):26. http://www.ecologyandsociety.org/vol16/iss2/art26/
894 895 896 897 898	Caviglia-Harris J, Sills EO, Mullan K (2013) Migration and mobility on the Amazon frontier. Popul Environ 34:338-369. http://dx.doi.org/10.1007/s11111-012-0169- 1
899	Chomitz KM, Gray DA (1996) Roads, land use, and deforestation: a spatial model

900 901 902	applied to Belize. The World Bank Economic Review 10(3):487–512. http://siteresources.worldbank.org/DEC/Resources/gray.pdf Accessed 21 Sept. 2014
903	
904 905 906	Cochrane MA, Schulze MD (1999) Fire as a recurrent event in tropical forests of the eastern Amazon: effects on forest structure, biomass, and species composition. Biotropica 31(1):2–16
907	
908	COPPE (2005) Inventário de emissões de gases de efeito estufa do município de São
909 910	Paulo: síntese. Prefeitura de São Paulo, Centro de Estudos Integrados sobre Meio Ambiente e Mudanças Climáticas, Programas de Pós-Graduação de
911	Engenharia (COPPE), Rio de Janeiro, RJ, Brazil.
912	http://www.prefeitura.sp.gov.br/cidade/secretarias/upload/sintesedoinventario 1
913	250796710.pdf Accessed 27 Sept. 2014
914	
915	Diniz AMA Santos RO (2005) O vertiginoso crescimento populacional de Roraima e
916 917	seus impactos socioambientais. Caderno de Geografia 15(25):23-44
918	Escada MIS, Alves DS (2001) Mudancas de uso e cobertura do solo na Amazônia:
919	Impactos sócio- ambientais na ocupação de regiões de fronteira agrícola
920	Relatório Técnico Parcial Instituto Nacional de Pesquisas Espaciais: Programa
921	de Ciência e Tecnologia para Gestão de Ecossistemas. São Paulo, SP Brazil 45
921	nn
922	PP
923	Fearnside PM (1984) I and clearing behaviour in small farmer settlement schemes in the
925	Brazilian Amazon and its relation to human carrying canacity. In Chadwick AC
926	Sutton, SL (eds) Tropical rain forest: the Leeds symposium. Leeds Philosophical
927	and Literary Society, Leeds, UK. pp 255-271
928	
929	Fearnside PM (1989) A ocupação humana de Rondônia: impactos, limites e
930	planejamento. Relatórios de Pesquisa No. 5, Conselho Nacional de
931	Desenvolvimento Científico e Tecnológico (CNPq), Brasilia, DF, Brazil. 76 pp
932	
933	Fearnside PM (1995) Global warming response options in Brazil's forest sector:
934	comparison of project-level costs and benefits. Biomass and Bioenergy 8:309-
935	322. http://dx.doi.org/10.1016/0961-9534(95)00024-0
936	
937	Fearnside PM (1996) Amazonian deforestation and global warming: carbon stocks in
938	vegetation replacing Brazil's Amazon forest. Forest Ecol Manage 80:21-34.
939	http://dx.doi.org/10.1016/0378-1127(95)03647-4
940	
941	Fearnside PM (1997) Greenhouse gases from deforestation in Brazilian Amazonia: net
942	committed emissions. Climatic Change 35:321-360.
943	http://dx.doi.org/10.1023/A:1005336724350
944	
945	Fearnside PM (2000) Global warming and tropical land-use change: greenhouse gas
946	emissions from biomass burning, decomposition and soils in forest conversion,
947	shifting cultivation and secondary vegetation. Climatic Change 46:115-158.
948	http://dx.doi.org/10.1023/A:1005569915357
949	

950	Fearnside PM (2001) Soybean cultivation as a threat to the environment in Brazil.
951	Environ Conserv 28:23-38. http://dx.doi.org/10.1017/S0376892901000030
952	
953	Fearnside PM (2007) Brazil's Cuiabá-Santarém (BR-163) Highway: the environmental
954	cost of paving a soybean corridor through the Amazon. Environ Manage 39:601-
955	614. http://dx.doi.org/10.1007/s00267-006-0149-2
956	
957	Fearnside PM (2008) The roles and movements of actors in the deforestation of
958	Brazilian Amazonia. Ecology and Society 13(1):23
959	http://www.ecologyandsociety.org/vol13/iss1/art23/. Accessed 16 September
960	2012
961	
962	Fearnside PM (2014) Impacts of Brazil's Madeira River dams: unlearned lessons for
963	hydroelectric development in Amazonia. Environ Science Policy 38: 164-172.
964	http://dx.doi.org/10.1016/j.envsci.2013.11.004
965	
966	Fearnside PM, Barbosa RI (1998) Soil carbon changes from conversion of forest to
967	pasture in Brazilian Amazonia. Forest Ecol Manage 108:147-166.
968	http://philip.inpa.gov.br/publ_livres/Preprints/1998/SOIL-C.htm
969	
970	Fearnside PM, Graça PMLA (2006) BR-319: Brazil's Manaus-Porto Velho Highway
971	and the potential impact of linking the arc of deforestation to central Amazonia.
972	Environ Manage 38:705-716
973	
974	Fearnside PM, Graça PMLA (2009) BR-319: A rodovia Manaus-Porto Velho e o
975	impacto potencial de conectar o arco de desmatamento à Amazônia central.
976	Novos Cadernos NAEA 12(1):19-50
977	
978	Fearnside PM, Graça PMLA, Keizer EWH, Maldonado FD, Barbosa RI, Nogueira EM
979	(2009a) Modelagem de desmatamento e emissões de gases de efeito estufa na
980	região sob influência da Rodovia Manaus-Porto Velho (BR-319). Rev Bras
981	Meteorol 24:208-233
982	
983	Fearnside PM, Guimarães WM (1996) Carbon uptake by secondary forests in Brazilian
984	Amazonia. Forest Ecol Manage 80:35-46
985	
986	Fearnside PM, Righi CA, Graça PMLA, Keizer EWH, Cerri CC, Nogueira EM, Barbosa
987	RI (2009b) Biomass and greenhouse-gas emissions from land-use change in
988	Brazil's Amazonian "arc of deforestation": the states of Mato Grosso and $\mathbf{D}_{10} = 10^{-1}$
989	Rondonia. Forest Ecol Manage $258:1968-1978$.
990	http://dx.doi.org/10.1016/j.foreco.2009.07.042
991	
992	Ferraz SFB, Vettorazzi CA, Theobald DM, Ballester MVR (2005) Landscape dynamics
993	of Amazonian deforestation between 1984 and 2002 in central Rondonia, Brazil:
994	assessment and future scenarios. Forest Ecol Manage 204:09-85
995	Entraira IV Vanticingua EM (2007) Árana protogidas como estratágia para conter a
990	desflorestemento ne Amerônia bresilaire. In Anais de 50º Devenião Amerônia
221	uesnoiesiamenio na Amazonia orasnenia. In Anais da 59º Keuniao Anual da SPDC – Polóm DA – Julho/2007, Sociododo Presileiro pare o Drograsso do
220	SDEC - DEIEIII, EA - JUIII0/2007. SOCIEURAUE DERSHEITA PARA O PROGRESSO DA Ciância (SBDC). São Daulo, SD. Prozil
222	Cicilcia (SDFC), Sau Faulu, SF, Diazii.

1000 1001 1002	http://www.sbpcnet.org.br/livro/59ra/pdf/leandro2.pdf. Accessed 18 September 2012
1002 1003 1004	Ferreira LV, Venticinque E, de Almeida SS (2005) O Desmatamento na Amazônia e a importância das áreas protegidas. Estudos Avançados 19(53):1-10
1005 1006 1007 1008 1009 1010 1011 1012	 Foley JA, Asner GP, Costa MH, Coe MTC, DeFries R, Gibbs HK, Howard EA, Olson S, Patz J, Ramankutty N, Snyder P (2007) Amazonia revealed: forest degradation and loss of ecosystem goods and services in the Amazon Basin. Frontiers Ecol Environ 5:25–32. http://water.columbia.edu/files/2011/11/DeFries2007Amazonia.pdf. Accessed 18 October 2013
1013 1014 1015 1016 1017 1018 1019	Fonseca A, Souza Jr C, Veríssimo A (2014) Boletim do desmatamento da Amazônia Legal, Sistema de Alerta de Desmatamento (SAD) setembro de 2014. Instituto do Homem e Meio Ambiente da Amazônia (IMAZON), Belém, Pará, Brazil. 10 pp. http://www.imazon.org.br/publicacoes/transparencia-florestal/transparencia- florestal-amazonia-legal/boletim-do-desmatamento-da-amazonia-legal- setembro-de-2014-sad Accessed 13 November 2014
1020 1021 1022	Hagen A (2003) Fuzzy set approach to assessing similarity of categorical maps. Internat Journ Geograph Informat Science 17:235-249
1023 1024 1025 1026 1027 1028 1029	Hargrave J, Kis-Katos K (2011) Economic causes of deforestation in the Brazilian Amazon: a panel data analysis for the 2000s. Discussion Paper Series n.17, University of Freiburg, Freiburg, Germany. 30 pp. http://www.vwl.uni- freiburg.de/iwipol/REPEC/fre/wpaper/DP17_Hargrave_Kis-Katos- Economic_Causes_of_Deforestation_in_the_Brazilian_Amazon.pdf. Accessed 16 September 2012
1030 1031 1032 1033	 Kaimowitz D, Mertens B, Wunder S, Pacheco P (2004) Hamburger connection fuels Amazon destruction. http://www.cifor.org/publications/pdf_files/media/amazon.pdf. Accessed 22 June 2009
1034 1035 1036 1037 1038	Kauffman JB, Uhl C, Cummings DL (1988) Fire in the Venezuelan Amazon 1: fuel biomass and fire chemistry in the evergreen rain forest of Venezuela. Oikos 53:167-175
1039 1040 1041 1042 1043	Klinge H, Rodrigues WA, Brunig E, Fittkau EJ (1975) Biomass and structure in a Central Amazonian rain forest. In Golley FB, Medina E (eds) Tropical ecological systems: trends in terrestrial and aquatic research. Springer-Verlag, New York, USA. pp 115-122
1044 1045 1046	Laurance WF, Cochrane MA, Bergen S, Fearnside PM, Delamônica P, Barber C, D'Angelo S, Fernandes T (2001) The future of the Brazilian Amazon. Science 291:438–439. http://dx.doi.org/10.1126/science.291.5503.438
1047 1048 1049	Ludewigs T, de Oliveira D'Antona A, Brondízio ES, Hetrick S (2009) Agrarian structure and land use change along the lifespan of three colonization areas in

1050 1051	the Brazilian Amazon. World Devel 37:1348-1359. http://dx.doi.org/10.1016/j.worlddev.2008.08.018
1052	
1053	Mazzoti FJ, Vinci JJ (2007) Validation, verification, and calibration: Using standardized
1054	terminology when describing ecological models. IFAS Extension, University of
1055	Florida, Gainesville, Florida, USA. http://edis.ifas.ufl.edu/uw256. Accessed 19
1056	October 2013
1057	
1058	McCarl B (1984) Model validation: an overview with some emphasis on risk models.
1059	Rev Marketing Agric Econ 52:153-173.
1060	http://ageconsearch.umn.edu/bitstream/12282/1/52030153.pdf. Accessed 19
1061	October 2013
1062	
1063	Morton DC, DeFries RS, Shimabukuro YE, Anderson LO, Arai E, Espirito-Santo FB,
1064	Freitas R, Morisette J (2006) Cropland expansion changes deforestation
1065	dynamics in the southern Brazilian Amazon. Proc Nat Acad Sciences USA
1066	103:14637-14641. http://blogs.ei.columbia.edu/wp-
1067	content/uploads/2009/11/30050426.pdf. Accessed 11 November 2014
1068	
1069	Mourão GMN (2003) Colonización reciente y asentamientos rurales en el sureste de
1070	Roraima, Amazonia Brasileña: entre la política y la naturaleza. Doctoral thesis,
1071	Universidad de Valladolid, Valladolid, Spain. 480 pp
1072	
1073	Myhre G & 37 others (2013) Anthropogenic and natural radiative forcing. In Stocker
1074	TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y,
1075	Bex, V, Midgley PM (eds). Climate change 2013: the physical science basis.
1076	Working group I contribution to the IPCC fifth assessment report. Cambridge
1077	University Press, Cambridge, UK, pp 661-740.
1078	http://www.ipcc.ch/report/ar5/wg1/
1079	
1080	Neeff T, Lucas RM, dos Santos JR, Brondízio ES, Freitas CC (2006) Area and age of
1081	secondary forests in Brazilian Amazonia 1978-2002: an empirical estimate.
1082	Ecosystems 9:609-623
1083	
1084	Nepstad DC, Carvalho G, Barros AC, Alencar A, Capobianco JP, Bishop J, Moutinho
1085	P, Lefebvre B, Silva Jr UL, Prins E (2001) Road paving, fire regime feedbacks,
1086	and the future of Amazon forests. Forest Ecol Manage 154:395-407
1087	
1088	Nepstad DC, Schwartzman S, Bamberger B, Santilli M, Ray D, Schlesinger P, Lefebyre
1089	P. Alencar A. Prinz E. Fiske G. Rolla A (2006b) Inhibition of Amazon
1090	deforestation and fire by parks and indigenous lands. Conserv Biol 20: 65-73
1091	derorestation and me of parts and margenous rands, consert Dior 20, 60 70
1092	Nepstad DC Stickler CM Almeida OT (2006a) Globalization of the Amazon soy and
1092	beef industries: opportunities for conservation. Conserv Biol 20:1595-1603
1000	beer industries: opportunities for conservation. Conserv Dior 20.1375 1005
1004	Noqueira FM, Fearnside PM, Nelson BW, Barbosa RI, Keizer FWH (2008) Estimates
1005	of forest hiomass in the Brazilian Amazon. New allometric equations and
1007	adjustments to biomass from wood-volume inventories. Forest Ecol Manage
1002	256.1853-1857 http://dx doi org/10.1016/i foreco.2008.07.022
1000	250.1055 1057. http://dx.doi.org/10.1010/j.101000.2000.07.022

1100 1101	Oliveira A (2005) BR-163 Cuiabá-Santarém: Geopolítica, grilagem, violência e mundialização. In Torres M (ed) Amazônia revelada: os descaminhos ao longo
1102	da BR-163. Conselho Nacional do Desenvolvimento Científico e Tecnológico
1103	(CNPq), Brasília, DF, Brazil. pp 67-183
1104	
1105	Perz SG, Aramburú C, Bremner J (2005) Population, land use and deforestation in the
1106	Pan Amazon Basin: a comparison of Brazil, Bolivia, Colombia, Ecuador, Perú
1107	and Venezuela Environ. Devel Sustainability 7:23-49
1108	
1100	Perz SG, Leite F, Simmons C, Walker R, Aldrich S, Caldas M (2010) Intraregional
1110	migration direct action land reform and new land settlements in the Brazilian
1111	Amazon, Bull Latin Amer Res 20:450-476
1117	Amazon. Dun Latin Amer Res 27.437-470
1112	Parz SC, Wood CH, Dorro D (2002) Dopulation growth and not migration in the
1113	Perz SO, wood CH, Pollo K (2002) Population growth and let inigration in the
1114	Brazilian Legal Amazon, 1970-1996. In wood CH, Porto R (eds) Deforestation
1115	and land use in the Amazon. University Press of Florida, Gainesville, Florida,
1116	USA, pp 107-129
1117	
1118	Pfaff A (1999) What drives deforestation in the Brazilian Amazon? Evidence from
1119	satellite and socioeconomic data. Jour Environ Econ Manage 37:26-43
1120	
1121	Pfaff A, Robalino J (2012) Protecting forests, biodiversity and the climate: predicting
1122	policy impact to improve policy choice. Oxford Rev Econ Policy 28:164-179
1123	
1124	Ramankutty N, Gibbs HK, Achard F, De Fries R, Foley JA, Houghton RA (2007)
1125	Challenges to estimating carbon emissions from tropical deforestation. Global
1126	Change Biol 13:51–66
1127	
1128	Roraima (2009) Tomada de preços Nº 120/2008, referente à elaboração de projeto para
1129	implantação e pavimentação na rodovia de ligação São João da Baliza X Nova
1130	Colina, Trecho: Sja 050 (Vicinal 26). Diário Oficial de Roraima, 13 February
1131	2009. http://www.jusbrasil.com.br/diarios/33049233/doerr-07-12-2011-pg-23.
1132	Accessed 16 September 2012
1133	
1134	Rykiel EJ, Jr (1996) Testing ecological models: the meaning of validation. Ecological
1135	Modelling 90:229-244. http://www.cs.northwestern.edu/~paritosh/papers/sketch-
1136	to-models/rykiel-testing-ecological-models96.pdf. Accessed 18 Oct 2013
1137	
1138	Sawyer D (1984) Frontier expansion e retraction in Brazil. In: Schimink M, Wood C
1139	(eds) Frontier expansion in Amazonia. University of Florida Press, Gainesville,
1140	Florida, USA, pp 180-203
1141	
1142	Silva RP (2007) Alometria, estoque e dinâmica da biomassa de florestas primárias e
1143	secundárias na região de Manaus (AM). PhD thesis in tropical forest science.
1144	Instituto Nacional de Pesquisas da Amazônia (INPA) & Fundação Universidade
1145	Federal do Amazonas (UFAM). Manaus, Amazonas, Brazil, 152 nn
1146	2 Subtrar do Filinazonas (OFFILI), Filinado, Filinazonas, Biuzin, 152 pp
1147	Simmons C. Walker R. Perz S. Aldrich S. Caldas M. Pereira R. Leite F. Fernandes I.C.
1148	Arima E (2010) Doing it for themselves: direct action land reform in the
1149	Brazilian Amazon. World Devel 38:429-444.

1150 1151	http://dx.doi.org/10.1016/j.worlddev.2009.06.003
1152 1153 1154	Soares-Filho BS, Alencar A, Nepstad D, Cerqueira G, Diaz M del CVD, Rivero S, Solorzanos L, Voll E (2004) Simulating the response of land-cover changes to road paving and governance along a major Amazon highway: the Santarém–
1155 1156	Cuiabá corridor. Global Change Biol 10:745-764
1157 1158 1159	Soares-Filho BS, Cerqueira GC, Pennachin CL (2002) DINAMICA - a stochastic cellular automata model designed to simulate the landscape dynamics in an Amazonian colonization frontier. Ecolog Modelling 154:217–235
1160	Sources Filho BS, Dietzsch I. (2008) Reduction of carbon emissions associated with
1161 1162 1163 1164	deforestation in Brazil: the role of Amazon region Protected Areas Program (ARPA). Worldwide Fund for Nature (WWF), Brasilia, DF, Brazil, 32 pp
1165 1166 1167 1168 1169	Soares-Filho BS, Ferreira BM, Filgueira DS; Rodrigues HO, Hissa LBV, Lima LS, Machado RF, Costa WLS (2014) Dinamica project. Remote Sensing Center. Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil. http://www.csr.ufmg.br/dinamica/. Accessed 24 September 2014
1170 1171 1172 1173	Soares-Filho BS, Nepstad DC, Curran L, Cerqueira GC, Garcia RA, Ramos CA, Voll E, Mcdonald A, Lefebvre P, Schlesinger P (2006) Modelling conservation in the Amazon Basin. Nature 440:520-523
1174 1175 1175 1176 1177 1178	Soares-Filho BS, Moutinho P, Nepstad D, Anderson A, Rodrigues H, Garcia R, Dietzsch L, Merry F, Bowman M, Hiss L, Silvestrini R, Maretti C (2010) Role of Brazilian Amazon protected areas in climate change mitigation. Proc Nat Acad Sciences USA 107:10821–10826. http://dx.doi.org/10.1073/pnas.0913048107
1179 1180 1181 1182 1183	UFAM (Universidade Federal do Amazonas) 2009 Estudo de Impacto Ambiental – EIA: obras de reconstrução/pavimentação da rodovia BR-319/AM, no segmento entre os km 250,0 e km 655,7. UFAM, Manaus, Amazonas, Brazil. 6 Vols. + Annexes.
1184 1185 1186 1187 1188 1189	Vasconcelos SS, Fearnside PM, Graça PMLA, Nogueira EM, de Oliveira LC, Figueiredo EO (2013) Forest fires in southwestern Brazilian Amazonia: estimates of area and potential carbon emissions. Forest Ecol Manage 291:199- 208. http://dx.doi.org/10.1016/j.foreco.2012.11.044
1190 1191 1192 1193	Ventana Systems Inc (2012) Vensim simulation software. Ventana Systems Inc, Belmont, Massachusetts, USA. http://www.vensim.com/software.html. Accessed 16 September 2012
1194 1195 1196 1197	Veríssimo A, Barreto P, Mattos M, Tarifa R, Uhl C (1992) Logging impacts and prospects for sustainable forest management in an old Amazonian frontier: the case of Paragominas. Forest Ecol Manage 55:169-199
1198 1199	Viana VM, Cemano MC, Pavan MN, Carrero GC, Quinlan MD (2008) Railroads in the Amazon: a key strategy for reducing deforestation. Carbon Climate Law Rev

1200	3:290-297
1201	
1202	Vitel CSMN (2009) Modelagem da dinâmica do Desmatamento de uma Fronteira em
1203	Expansao, Labrea, Amazonas. Masters dissertation, Instituto Nacional de
1204	Pesquisas da Amazonia (INPA), Fundação Universidade Federal do Amazonas
1205	(UFAM), Manaus, Amazonas, Brazil. 121 pp
1206	
1207	Vitel CSMN, Fearnside PM, Graça PMLA (2009) Análise da inibição do desmatamento
1208	pelas áreas protegidas na parte Sudoeste do Arco de desmatamento. In
1209	Epiphanio JCN, Galvão LS (eds) Anais XIV Simpósio Brasileiro de
1210	Sensoriamento Remoto, Natal, Brasil 2009. Instituto Nacional de Pesquisas
1211	Espaciais (INPE), São José dos Campos, São Paulo, Brazil. pp 6377-6384.
1212	http://marte.sid.inpe.br/col/dpi.inpe.br/sbsr%4080/2008/11.13.14.42/doc/637/-
1213	6384.pdf
1214	
1215	Yanai AM, Fearnside PM, Graça PMLA, Nogueira, EM (2012) Avoided deforestation
1216	in Brazilian Amazonia: simulating the effect of the Juma Sustainable
1217	Development Reserve. Forest Ecol Manage 282:78-91.
1218	http://dx.doi.org/10.1016/j.foreco.2012.06.029
1219	
1220	
1221	rigure legends
1222	Fig. 1 (A) Describ with regions and states (D) Describ with leasting montioned in text
1223	Fig. 1. (A) Brazil with regions and states. (B) Brazil with locations mentioned in text.
1224	(C) Koraima state.
1225	Eq. 2 (A) Drazilian Local Amazonia (D) Southarn Daraima: $E_{c} = E_{c}$ and station.
1220	Fig. 2. (A) Brazinan Legal Amazonia (B) Southern Koranna, E.S. = Ecological station,
1227	indicatos fadaral highways: Municipal soats: 1 - Caracaraí 2 - Poreinopolis 2
1220	- São Luiz do Arous $A = $ São Loão do Poliza $5 = $ Caracatal, $2 =$ Koramopolis, $5 =$
1229	= Sao Luiz do Afada, 4 $=$ Sao Joao da Baliza, $J =$ Caloebe.
1220	Fig. 3. Conceptual diagram of the ACROECO model (adapted from Vitel 2000). The
1221	model's non-spatial portion is in Vensim software, and the spatial portion is in
1232	DINAMICA ECO software. Static variables include soil type, vegetation
1235	altitude and tonography. Dynamic variables include distance to previous
1725	deforestation distance to roads, and status as a settlement or as a protected area
1225	(t-tn) = Man at time "t" (iteration) of the simulation: $(P(rd)) = Probability for$
1227	(1-tin) = Map at time t ((tertation) of the simulation, $(1 (td)) = 1$ to bability for regrowth \rightarrow deforested (clearing): (P(dr)) = Probability of deforested \rightarrow
1720	regrowth and: $(P(fd)) = Probability of forest deforested$
1230	regrowth and, (r(rd)) = rrobability of rolest ~ deforested.
1235	Fig. 4. Land-use and cover maps of the study area for 2004 (A) and 2007 (B) used as the
1240	initial map and for calculating 2004-2007 transition rates. In our study area
1241	"non-forest" refers to <i>camping</i> , a woody scrub vegetation on oligotrophic soils
1242	(low-nutrient white-sand soils) in seasonally flooded areas along the Branco
1245	River
1244	River.
1246	Fig. 5 Examples of weights of evidence of some dynamic variables used in our model:
1247	distance to secondary roads (A) distance to deforestation (R) distance to main
1748	roads (C) and distance to rivers (D). Higher values of weights of evidence (W^+)
1749	result in higher probability that the corresponding transition (such as
1275	result in inglier producinty that the corresponding transition (such as

1250	deforestation) will take place.
1251	
1252	Fig. 6. Conservation Units (CUs) proposed in the conservation scenarios.
1253	
1254	Fig. 7. Increased detail comparing simulated and observed deforestation in 2007 (B) in
1255	the southern portion of Brazil's state of Roraima (Brazil, INPE, 2008) for
1256	validation of the model. The historical landscape (A) represents deforestation
1257	detected by the PRODES program on LANDSAT-TM imagery for 2007.
1258	Simulated deforestation starts from PRODES deforestation present in 2004 and
1259	adds simulated clearing up to 2007 based on the model specifications.
1260	
1261	Fig. 8. Cumulative deforestation under four simulated scenarios from 2007 to 2030 for
1262	the southern portion of Brazil's Roraima state.
1263	
1264	Fig. 9. Scenarios for deforestation simulated from 2007 to 2030 in southern Roraima:
1265	(A) baseline scenario (BAU1), (B) BAU2 scenario, (C) conservation scenario 1
1266	(CONSERV1) and conservation scenario 2 (CONSERV2). In the two BAU
1267	scenarios roads planned for the future are indicated by year of implementation in
1268	the model. In conservation scenarios, three proposed conservation units are
1269	shown. In our study area "non-forest" refers to campina, a woody scrub
1270	vegetation on oligotrophic soils (low- nutrient white-sand soils) in seasonally
1271	flooded areas along the Branco River
1272	
1273	Fig. 10. Map of elevation and of the locations of settlement projects, indigenous lands
1274	and conservation units. Land invasions were observed adjacent to settlement
1275	projects and indigenous lands.

Table 1. Schedule for construction and paving of planned roads in the AGROECO model ^a

		Length		
Year	Road name	(km)	Area (ha) ^b	Municipality
2008	BR-174 and BR-210	526	_	All
2009	BR-210 segment	63	75,600	São João/Caroebe
2011	Secondary roads	140	168,000	Rorainópolis
2012	RR-170 and BR-422	136	163,200	Caracaraí/Rorainópolis
2013	Roads in the Engano River region	264	316,800	Caracaraí
2014	Roads in the Jatapú Dam region	73	87,600	Caroebe
2015	Continuation of the Vincinal 07 road	65	78,000	Caroebe
2018	Road to Sta. Maria do Boiuçú	126	151,200	Rorainópolis
Total	_	867	1,040,400	_

^aFor all scenarios except some destinations in the conservation scenarios.

^bAvailable area for deforestation

Table 2. Premises for the scenarios.

Scenario	BR-319	Planned	Conservation	Migration	
	Highway	local	units	factor	
		roads			
BAU1	No	Yes	No	No	
CONSERV1	No	No	Yes	No	
BAU2	Yes	Yes	No	Yes	
CONSERV2	Yes	No	Yes	Yes	

Table 3. Average biomass (below- and above-ground) present in forests in Roraima state in 2007.

				Biomass			
			Pixels by	(above +		Forest	
			forest	below		biomass	Forest
Code	Forest type	Value	type ^b	ground)	Inventories	stock	carbon stock
		No.	No.	Mg ha ⁻¹	No.	Mg	Mg
	Contact zone: rainforest & vegetation on		140.064	. <u> </u>		260 264 646	174 700 050
LO	white sand	15	149,864	384.6	274	360,264,646	174,728,353
Fs	Seasonal semideciduous forest, submontane	10	187	315.7	33	368,951	178,941
	Open-canopy rainforest on non-flooding		26.210				10 000 705
Ab	lowlands	6	36,318	363.4	265	82,494,236	40,009,705
As	Open-canopy rainforest, submontane	7	87,053	336.0	618	182,824,258	88,669,765
Da	Dense-canopy rainforest on river floodplain	14	38,542	360.8	144	86,918,604	42,155,523
	Dense-canopy rainforest on non-flooding					550 505 (10	0.5 000 511
Db	lowlands	13	229,923	384.5	517	552,537,610	267,980,741
Dm	Dense-canopy rainforest, montane	11	20,845	361.3	27	47,070,899	22,829,386
Ds	Dense-canopy rainforest, submontane	12	415,241	385.3	533	1,000,042,511	485,020,618
La	Open Woody Oligotrophic Vegetation of	8	26,939	60.6	c	10,206,025	4,949,922

swampy & Sandy areas

	Total	-	1,127,258	_	_	258,231,911	1,240,742,477
Sg	Grassland Savanna	1	524	12.6	f	41,177	19,971
Sa	Open Woodland Savanna	2	13,506	44.7	f	3,772,825	1,829,820
Lg	Swampy & Sandy areas	3	1,121	46.0		2,221,513	1,077,434
T.	Grassy-woody Oligotrophic Vegetation of	2	7 7 7 7	16.0	e	2 221 512	1 077 424
Ld	swampy & Sandy areas	4	100,389	303.0		229,408,030	111,292,298
	Dense Woody Oligotrophic Vegetation of	4	100 590	265.0	d	220 468 656	111 202 208

^a Brazil, IBGE (2012).

^b Pixel resolution: 250 m (6.25 ha).

^c Barbosa and Ferreira (2004) and 2.81 (root/shoot) for root fraction (R.I. Barbosa Pers. comm.; see Barbosa et al. 2012).

^d Estimates from Brazil, Projeto RADAMBRASIL (1973-1983).

^e Estimates from Kauffman et al. (1988) and Klinge et al. (1975).

^f Barbosa and Fearnside (2005) and 2.81 (root/shoot) for root fraction (R.I. Barbosa Pers. comm.; see Barbosa et al. 2012).

Scenario	Cumulative	Growth		Forest	Forest	Carbon absorbed	Net carbon
	deforested	2007/2030		biomass	carbon	by replacement	emission
	area					vegetation	
	hectares	hectares	%	Mg	Mg	Mg	Mg
BAU1	715,250	342,612	91.9	126.7×10^{6}	61.5×10^6	5.1×10^{6}	56.4×10^{6}
CONSERV1	654,513	281,876	75.6	104.1×10^{6}	$50.5 imes 10^6$	$4.5 imes 10^6$	$46.0 imes 10^6$
BAU2	858,639	486,001	130.4	$178.2 imes 10^6$	$86.4 imes 10^6$	$6.1 imes 10^6$	$80.3 imes 10^6$
CONSERV2	775,888	403,250	108.2	$149.7 imes 10^6$	$72.6 imes 10^6$	$5.4 imes 10^6$	67.2×10^6

Table 4. Estimates of forest biomass and carbon emissions in 2030

Simulating deforestation and carbon loss in Amazonia: impacts in Brazil's Roraima state from reconstructing Highway BR-319 (Manaus-Porto Velho)

1. Road-Building Module

DINAMICA-EGO software's road-building module is directed by a set of maps that either favor or restrict advancement of roads. In the AGROECO model (Fig. S1), this module also creates an area of "accessible forest," which is a 2-km strip on each side of both planned roads and endogenous roads (created automatically). This area of forest is highly favorable for deforestation, as it simulates occupation area of land plots (e.g. Fearnside et al. 2009; Yanai et al. 2012).

Fig. S1. Illustration of data flow in the AGROECO model for delimitation of the "accessible forest" area.

2. Calculation of Weights of Evidence

Weights of evidence originate from the Bayesian method of conditional probability. In modeling dynamics of land-use and land-cover change, they are applied to calculate *a posteriori* probabilities of a pixel being deforested, given *a priori* knowledge of favorable local conditions for deforestation. In this step of modeling maps of land use, the static and dynamic variables were combined in a DINAMICA-EGO sub-template for extracting weights of evidence (Soares-Filho et al. 2014).

The influence of weights of evidence on the variables can be positive (favoring deforestation) or negative (inhibiting deforestation). The weights of evidence are

recalculated at each iteration of the model considering the total area of forest available in a given iteration.

In the simulation the weights of evidence represent the "amount" of influence of each variable on the spatial transition probability of a cell in a particular state (i) changing to another state (j) depending on its location within a given range of distance. Thus, the most likely state change will occur in the cell whose location is closest to the range of the classes of interest. This relationship is given by Equations (1) to (9):

$$P(D|A) = \frac{P(D \cap A)}{P(A)} \tag{1}$$

$$P(A|D) = \frac{P(A \cap D)}{P(D)}$$
(2)

$$P(A \cap D) = P(A|D) \times P(D)$$
(3)

In the same fashion, considering the non-event D, as non-D (\overline{p}) , one obtains: (4)

$$P(\overline{D}|A) = P(\overline{D}) \times \frac{P(A|\overline{D})}{P(A)}$$
⁽⁴⁾

Substituting (4) in (1), one obtains (5):

$$P(D|A) = P(D) \times \frac{P(A|D)}{P(A)}$$
⁽⁵⁾

Applying the ratio between Equations (6) and (7), one obtains (8):

$$O(D|A) = O(D) \times \frac{P(A|D)}{P(A|\overline{D})}$$
(6)
(7)
$$log O(D|A) = log O(D) + log \frac{P(A|D)}{P(A|\overline{D})}$$

$$log O(D|A) = log O(D) + W^{+}$$
(8)

Therefore:

$$\log O(D|A_i) = \log O(D) + \sum_{i=1}^{n} W_i^+$$
(9)

Where "{D}" and "O {D/A}" are ratios of *a priori* probabilities of event "D" occurring, and of event "D" occurring given a spatial pattern "A," respectively. "W⁺" is, therefore, the weight of evidence of the event D occurring given a spatial pattern "A." *A posteriori* spatial probability of a transition " $i \rightarrow j$ " from a set of spatial data "(B, C, D, ... N)" is

expressed as: (10)

$$P(i \to j | B \cap C \cap D \dots \cap N) = \frac{e^{\sum W_i^+}}{1 + e^{\sum W_i^+}}$$
⁽¹⁰⁾

Where, "B, C, D, ..., N" are values of k spatial variables measured at position "x, y" and are represented by their weights " W^+ N."

3. The Patcher and Expander Functions

DINAMICA-EGO uses a local rule for the cellular automaton algorithm, where is a transition mechanism composed of two complementary functions: Patcher and Expander (Fig. S2). The Patcher function searches for cells around a location that has been chosen (through a seeding mechanism) for a combined transition for formation of a new deforestation patch. This is done by first choosing the central cell of a new patch and then selecting a specific number of cells surrounding the central cell based on a transition probability "P ($i \rightarrow j$)" calculated from the weight of evidence. The Expander function is only dedicated to expansion or contraction of previous patches of a given class. In the Expander function, a new spatial transition probability "P ($i \rightarrow j$)" depends on the number of cells of type j around a cell of type i. For constructing the scenarios, the transitions used were "forest \rightarrow deforestation" ($1 \rightarrow 3$), "deforestation \rightarrow regeneration" ($1 \rightarrow 2$) and "regeneration \rightarrow deforestation" ($2 \rightarrow 1$).

Fig. S2. *Pij* arrays before (a) and after (b) applying the Expander function (1) and the selection of cells around a core cell allocated by the Patcher function (2). Adapted from Soares-Filho et al. (2002).

Parameters used for the Patcher and Expander functions in the four simulated scenarios were the same for the transition "forest \rightarrow deforestation" (3 \rightarrow 1). Means and variances of deforestation polygons were derived for the study area (Barni et al. 2012)

and were 12.5 ha, 62.5 ha and 1.7 for the mean, variance and isometry values, respectively. The partition between the two change functions was 75% for Patcher and 25% for Expander.

Equal values were also used for the transitions "deforestation \rightarrow regeneration" (1 \rightarrow 2) and "regeneration \rightarrow deforestation" (2 \rightarrow 1). The parameters were 6.5 ha (one pixel) and 0 (zero) for the mean and variance, respectively, for the polygons with these transitions, with an isometry value of 1.7. The partition between the two change functions was 65% for Patcher and 35% for Expander for both transitions.

4. Available forest

New deforestation expansion fronts have been detected linked with logging activities (Barni et al. 2012). In three of these fronts we suggest creating conservation units as part of the modeling exercise. Approximately 40% of these forests are accessible due to proximity to roads; these areas are distributed between existing projects and indigenous lands (Table S1). However, some blocks of continuous forest are accessible only by river transport on the Branco River (e.g., in Santa Maria do Boioçu).

Use class description	Area (km ²)	Percentage
Southern portion of Roraima	98,955.1	44.1% of the state
Forest	84,910.6	85.8% of southern Roraima
Non forest	14,044.5	14.2% of southern Roraima
Indigenous Land (I.L.)	22,737.8	23.0% of southern Roraima
Conservation Units (C.U.)	13,849.2	14.0% of southern Roraima
Settlements	6,038.7	6.1% of southern Roraima
Deforestation*	3,689.6	3.7% of southern Roraima
Deforestation in settlements	2,420.3	65.6% of area in settlements
Regrowth and degraded pastureland	2,767.2	75.0% of southern Roraima (from Terra class)
Available forest**	41,015.6	41.4% of southern Roraima

Table S1. Areas of use classes in southern Roraima.

* Deforestation up to 2010 in southern Roraima (Brazil, INPE 2014)

** Remaining forest without any protection status and outside of settlement projects.

References

Barni PE, Fearnside PM, Graça PMLA (2012) Desmatamento no Sul do Estado de Roraima: padrões de distribuição em função de projetos de assentamento do INCRA e da distância das principais rodovias (BR-174 e BR-210). Acta Amazonica 42:195-204

Brazil, INPE (2014) Monitoramento da Floresta Amazônica Brasileira por Satélite.

Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, São Paulo, Brazil. http://www.obt.inpe.br/prodes/. Accessed 19 September 2014

- Fearnside PM, Graça PMLA, Keizer EWH, Maldonado FD, Barbosa RI, Nogueira E M (2009) Modelagem de desmatamento e emissões de gases de efeito estufa na região sob influência da Rodovia Manaus-Porto Velho (BR-319). Revista Brasileira de Meteorologia 24: 208-233
- Soares-Filho BS, Cerqueira GC, Pennachin CL (2002) DINAMICA -- a stochastic cellular automata model designed to simulate the landscape dynamics in an Amazonian colonization frontier. Ecolog Modelling 154:217–235
- Soares-Filho BS, Ferreira BM, Filgueira DS; Rodrigues HO, Hissa LBV, Lima LS, Machado RF, Costa WLS (2014) Dinamica project. Remote Sensing Center. Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil. http://www.csr.ufmg.br/dinamica/ Accessed 24 September 2014
- Yanai AM, Fearnside PM, Graça PMLA, Nogueira, EM (2012) Avoided deforestation in Brazilian Amazonia: Simulating the effect of the Juma Sustainable Development Reserve. Forest Ecol Manage 282:78-91. http://dx.doi.org/10.1016/j.foreco.2012.06.029