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Chapter 16.  
 
The impact of land use on carbon stocks and fluxes in Brazilian Amazonia: 
Implications for policy 
 
Philip Fearnside, Instituto Nacional de Pesquisas da Amazonia, Manaus 
 
 
ABSTRACT 
 
Research on carbon stocks and fluxes in Amazonia is advancing both through the 
collection of new data and through re-interpretation of older data. Factors affecting 
carbon stocks and fluxes include deforestation and forest degradation by logging and 
fire. Clearing and emissions in Brazilian Amazonia have declined substantially since 
their peak in 2004, but forces pushing in the other direction are expected from planned 
infrastructure and from recent weakening of the country’s Forest Code and of its 
environmental licensing process. Emissions from forest degradation by logging and fire 
are growing and underappreciated concerns. 
 
Keywords: Amazonia, Brazil, Climate change, Rainforest, Global warming, Greenhouse 
gas emissions, Tropical forest 
  
 
1.) INTRODUCTION 
 

Assessing impact of land use on carbon stocks and fluxes depends on 
quantification of the magnitudes and understanding the processes operating in all three 
of these sectors. This requires estimates of biomass and carbon stocks, the carbon fluxes 
from transformations such as deforestation and abandonment to secondary succession, 
and the associated models of land-use change needed to estimate the areas affected. 
Although significant progress has been made in these three areas in the past few years, 
much remains to be done. The social and physical changes themselves have been 
evolving, as have expectations regarding future changes in Brazilian Amazonia, or 
Brazilian Legal Amazon (BLA) (Figure 1). This chapter reviews progress on emissions 
estimates for deforestation and logging and for the magnification of these effects by 
extreme events. Future prospects for monitoring these processes are also reviewed. 
Finally, the chapter reviews land-use change, its modeling, recent developments and 
probable future drivers. This includes both the forces driving increased biomass loss and 
consequent carbon emission and efforts such as Reducing Emissions from Deforestation 
and Degradation (REDD) that are aimed at restraining forest destruction by using the 
value that avoiding these emissions has for global efforts to mitigate climate change. 

 
  [Figure 1 here] 

 
2.) EMISSIONS ESTIMATES 
 
2.1. Deforestation 
 

There have been a number of advances in quantifying emissions from 
deforestation, but this is still the most uncertain portion of global emissions estimates. 
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Discrepancies are large among recent estimates of emissions (but see Gloor 2015; Grace 
2015). Harris et al. (2012) estimated average annual gross emission from tropical 
deforestation over the 2000-2005 period at 0.81 Pg C (0.57-1.22 Pg C 90% confidence 
interval). This contrasts with an estimate of 2.2 Pg C by Baccini et al. (2012) for the 
2000-2010 period as well as estimates by Houghton (2003) of 1.93 Pg C for 1980-1989 
and 2.2 Pg C for 1990-1999. It also differs from the ‘classic’ value of 1.6 Pg C for the 
annual net emission from land-use change that persisted through a series of 
Intergovernmental Panel on Climate Change (IPCC) reports on the basis of an evolving 
series of rationales (see Fearnside 2000b). 

 
The study by Harris et al. (2012) has claimed as positive points the fact that the 

study was limited to gross emissions (i.e., ignoring regrowth in the deforestation 
emission) and that it omitted soil carbon. The study also omitted the trace-gas emissions 
that, considering the global warming potentials used to express CO2 equivalents under 
the 1997 Kyoto Protocol of the United Nations Framework Convention on Climate 
Change (UNFCCC), increased the impact of global warming of each ton of carbon 
emitted by deforestation by c. 15.3% ± 9.7% (depending on the emission factors used) 
as compared to a ton of carbon emitted by fossil fuels, which emit almost all of their 
carbon as CO2 (Fearnside 2000c, pp. 143–145). This author holds the view that all 
components must be included based on the best available data, even if the estimates 
have substantial uncertainty. Excluding uncertain components does not increase the 
utility of the result for assessing the impact of land use on carbon stocks and fluxes – it 
only makes the result less relevant. 
 

The trace-gas emissions depend on how much of the biomass is oxidized 
through combustion and how much through decay (e.g., Fearnside 2000c). For the 
portion oxidized through combustion, the amount emitted through flaming versus 
smouldering combustion is important, more trace gases being emitted by smouldering. 
Burn quality is an important factor in determining the biomass exposed to burning that 
is actually oxidized, the unburned biomass that will be subject to decay or to subsequent 
burning, and how much is converted to charcoal. Studies include those of Soares Neto 
et al. (2009), who found 23.9% burning efficiency in Alta Floresta, Mato Grosso, 
similar to other results from Amazonian burns. A study by Righi et al. (2009) in a 
transition forest in Feliz Natal, Mato Grosso in 2007 (a dry year) found a burning 
efficiency of 65%. Higher burning efficiencies in forests with lower biomass in the ‘arc 
of deforestation’ imply additional trace gas emissions (Fearnside et al., 2009). 
  
2.2. Logging 
 
2.2.1. Logging and emissions 
 

Logging is a major factor of forest disturbance that has received much less 
research attention than deforestation, in part because of the greater difficulty of 
quantification by remote sensing. Merry et al. (2009) have simulated the future advance 
of logging, and Ahmed and Ewers (2012) have produced maps of remaining timber 
resources. 

 
The question of how much carbon is emitted by logging is an important one, and 

it has not been adequately included in global emissions estimates and in national 
accounts. Brazil’s first inventory included an estimate (not included in the inventory’s 
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accounting of national emissions) of only 2.4 × 106 Mg C per year (MCT 2004, p. 149), 
and logging emissions were completely omitted in the second inventory (MCT 2010). 
By contrast, Asner et al. (2005) estimated annual emissions from logging at 80 × 106 
Mg C. An unpublished critique by researchers at Brazil’s  National Institute for Space 
Research (INPE) (Câmara et al. 2005) pointed out problems in interpreting the satellite 
imagery and suggested that the annual emission will be about half as much, or 40 × 106 
Mg C. Both results provide confirmation that emissions are substantial, and they bracket 
the earlier estimate of 62 × 106 Mg C (Fearnside 2000a). In 1990 (the standard year for 
initial inventories under the UNFCCC), this represented 15% of the annual balance of 
emission from Amazonian deforestation and logging in Brazil (Fearnside, 2000a); the 
percentage today would be higher, since the deforestation rate in 2013 had declined to 
roughly half the rate in 1990, but logging activity has not declined.  
  
2.2.2. Future prospects for monitoring logging 
 

Progress has been disappointing in automatic interpretation of satellite imagery. 
One algorithm (Souza et al., 2005) tried and failed to win approval by the Brazilian 
Forest Service (SFB) for use in application on a regional scale. Graça et al. (2005) 
developed an algorithm that performed well in a limited area near Cláudia, Mato 
Grosso, but has not yet been translated into an automated form that can be easily 
applied on a regional scale. The CLASS algorithm (Asner et al., 2005) has a better 
computational implementation for large-scale ‘operational’ use. The algorithm needs to 
be complemented with local expertise to clean the results of areas of rock outcrops, 
hilltops and some seasonally flooded ecosystems (várzea) that were mistakenly 
identified as logging in the study by Asner et al. (2005) as pointed out by Câmara et al. 
(2005). A subsequent ‘light’ adaptation (ClassLite: Asner et al., 2009) is not designed 
specifically for logging, but rather for detecting biomass loss from any cause, including 
fire. 

 
A key to identifying logging activity is the correct identification of the logging 

decks (small clearings where logs are stockpiled for loading on trucks). This has been 
hindered by the effect of shadows that often impede the algorithms from correctly 
identifying the decks. An important advance has been made by Maldonado et al. (2009), 
who developed an algorithm that eliminates the effect of shading, so that the logging 
decks stand out clearly. 

 
Unfortunately, none of these algorithms has yet advanced to the point where 

regular estimates of degradation (biomass loss) from logging are available similar to 
those produced yearly for deforestation. The DETEX program of INPE is intended to 
monitor areas of logging, but, so far, the results of this effort are not posted on INPE’s 
website, in contrast to the annual deforestation data from the PRODES program. It 
should be noted that logging interests are adamant that logged areas not be characterized 
as ‘degraded’, but rather as ‘managed’ areas. However, considering the definition of 
degradation as a reduction in biomass and carbon stock, logged areas are greatly 
degraded (e.g., Keller et al., 2004). They are also damaged in other ways as compared to 
undisturbed forest. In practice, logging often serves as a prelude to conversion to other 
uses, despite the discourse regarding sustainable management (e.g., Fearnside, 2003). 
 
2.3. Extreme events 
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2.3.1. Extreme events and emissions 
 
The impact of land-use change on carbon stocks and flows is aggravated by 

extreme events, especially droughts. Deforestation creates forest edges, where the 
microclimate is hotter and drier than in continuous forest, causing increased tree 
mortality due to water stress (Nascimento and Laurance, 2004). Droughts magnify this 
source of mortality. The edges are also the main entry point for forest fires (Cochrane 
and Laurance, 2002), which are also directly related to rainfall (Vasconcelos et al., 
2013a; Nepstad et al. 2004). Amazonian droughts affect biomass both through mortality 
and though impeding growth (Gatti et al., 2014; Phillips et al., 1998, 2009, 2010). Tree 
mortality from forest-fire events has been estimated in on-the-ground studies by various 
authors (Table 1).  
 
   [Table 1 here] 
 

Almost all Amazonian forest fires are at least partially the result of human 
activities, including both the ignition sources and, in many cases, the increased 
flammability of standing forest due to the impact of logging in increasing necromass 
and in opening the canopy (e.g., Gerwing, 2002; Berenguer et al., 2014). These factors 
make it possible for forest fires to develop whenever a major drought episode occurs, 
such as the El Niño events of 1997-1998 and 2003 and the Atlantic dipole events of 
2005 and 2010 (Lewis et al., 2011; Marengo et al., 2008, 2011, 2015).  
 

The losses are more severe when logging and fire are combined (e.g., Barlow 
and Peres 2006). In a study in Paragominas, Pará, Gerwing (2002, p. 136) found, as 
compared to ‘intact’ forest, 11.8% less total above-ground biomass (live + dead) in 
forest that had been moderately logged, 12.9% less in forest that had been heavily 
logged, 23.4% less in forest that had been logged and lightly burned, and 51.1% less in 
forest that had been logged and heavily burned. Berenguer et al. (2014, p. 6) found 
forest that had been logged but not burned to have c. 24.5% less carbon in above-ground 
biomass (live + dead), on average, than ‘undisturbed’ forest in Paragominas, while 
forest that had been both logged and burned had 48.2% less. In Santarém, the same 
study found that forests that had been logged but not burned had above-ground biomass 
carbon reduced by only 2.2%, while those that had only been burned had 5.6% less and 
those both logged and burned 22.2% less than ‘undisturbed’ forest. 
 

The occurrence of fire is related to rainfall and soil water (Alencar et al., 2004; 
Aragão et al., 2008; 2016; Nepstad et al. 2004; Silvestrini et al. 2011). This indicates the 
likelihood of increased fires if Amazonia experiences the projected by dry-season 
rainfall decreases expected to result from continued global warming (Justino et al., 
2011; Malhi et al. 2008, 2009b; Nepstad et al. 2008; Nobre and Borma, 2009). Among 
the consequences of this would be reduced capacity for REDD to provide benefits, both 
for climate and for local populations (Aragão and Shimabukuro 2010; Barlow et al., 
2012). 

 
Emissions from the major forest fires that occurred during the El Niño of 1997-

1998 were estimated in Pará (Alencar et al. 2006) and in Roraima (Barbosa and 
Fearnside 1999). Potential emissions from the fires in south-western Amazonia during 
the 2005 Atlantic dipole drought were estimated by Vasconcelos et al. (2011, 2013b). 
All of these studies indicate major emissions. 
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Because forest fires represent a threat to Amazonian forest, it is important to 

understand the likely changes in fire frequency and area under climate regimes altered 
by global warming (Aragao et al. 2016). The distribution of fires of different sizes is 
important in helping to define the levels of atmospheric greenhouse gases that 
correspond to ‘dangerous’ interference with the global climate system, as required by 
Article 2 of the climate convention (UNFCCC, 1992). A study by Pueyo et al. (2010) 
has contributed to this in improving the mathematical characterization of fire-size 
distributions in Amazonian forest and savanna ecosystems under drought conditions. 
The study finds evidence of a critical transition to a megafire regime under extreme 
drought in rainforests. 
 

The effect of increased forest fires under climatic regimes altered by projected 
global warming has been omitted from most modeled estimates of future emissions 
from Amazonia (e.g., Cox et al., 2004, 2008). Forest fires would both increase 
emissions and speed the demise of the forest, as compared to a scenario without fires. 
The effect of fire is not included in recent models that indicate resistance of Amazon 
forest to climates with as much as four times the pre-industrial atmospheric CO2 
concentration, based on CO2 fertilization increasing tree growth and reducing water loss 
from transpiration (Cox et al., 2013; Good et al., 2013; Huntingford, et al., 2013). Fires 
can kill trees irrespective of their ability to survive drought alone (e.g., Fearnside, 
2013a). 

 
Emissions from forest fires are not included in national accounts under the 

UNFCCC (IPCC, 2006). However, if global warming is to be contained, it is necessary 
to have estimates of all emissions sources, including those that are wholly or partially 
the result of natural events. Only emissions that are ‘directly human induced’ are 
covered under the Kyoto Protocol (UNFCCC, 1997) and are considered to be the 
responsibility of the country where the emission occurred. The objective of the 
UNFCCC is to avoid ‘dangerous’ concentrations of greenhouse gases (UNFCCC, 1992, 
Art. 2). To keep concentrations within this limit, it is necessary to know the total that is 
being emitted in the world so that the quotas (‘assigned amounts’) negotiated for the 
different countries will be sufficient to limit the total increase, not just the increase that 
is deliberately emitted by society. If emissions, such as those of anthropogenic forest 
fires are not counted, then the quotas negotiated may be insufficient to contain global 
warming. 

 
2.3.2. Monitoring fires 

 
The interpretation of satellite imagery to detect and quantify damage from 

Amazonian fires has advanced using LANDSAT-TM imagery with 30-m resolution 
(e.g., Graça et al., 2012; Aragao et al. 2016). INPE’s DEGRAD program uses 250-m 
resolution MODIS imagery to measure fire scars at least 25 ha in area (INPE, 2014a). 
These results are not yet posted on INPE’s website, but they are communicated to the 
Ministry of the Environment. 

 
Canopy damage has been mapped by Morton et al. (2011) for one LANDSAT 

scene in southern Amazonia using both LANDSAT and MODIS imagery. The 
algorithm that these authors developed is able to differentiate canopy damage from fires 
and from logging for areas above 1.5 ha using LANDSAT or 10 ha using MODIS, using 
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a 4-year moving window to characterize the changes in each group of pixels over time. 
These developments offer hope that the spatial extent of fire damage can be quantified 
on a regional basis, thereby addressing an important source of uncertainty regarding 
Amazonian emissions from forest degradation (Aragao et al. 2016). 

 
3. LAND-USE CHANGE 
 
3.1. Modeling land-use change 
 

Difficult as it is, the ability to understand and model land-use change is essential 
if effective governance measures are to be implemented to bring the process under 
control. The causes of Amazonian deforestation are many, and the relative importance 
of each varies among locations and over time in any given location (e.g., Fearnside, 
2005, 2008a). The dynamics of clearing by small farmers depends on a variety of 
economic and demographic factors (Caldas et al., 2010; Perz and Walker, 2002). Roads 
are important factors for actors of all sizes, but the tens of thousands of kilometers of 
clandestine or ‘endogenous’ roads that have been built in the forest are particularly 
important for entry of small farmers (Brandão Júnior et al., 2007). Roads speed 
deforestation not only though clearing spreading laterally from the roadside, but also by 
allowing migration flows to areas far beyond the end of the road in question, as in the 
case of the proposed reopening of the BR-319 Highway that would reconnect Manaus 
and Porto Velho (Barni et al., 2015). Land speculation, which is also stimulated by 
roads, is a significant force in many parts of the region, including among small farmers 
in settlement areas established by the government (Carrero and Fearnside, 2011). 

 
Cattle pasture is still the main replacement for forest in Brazilian Amazonia as a 

whole (McAlpine et al., 2010). However, soybeans are the major force driving land-use 
change in much of Mato Grosso and in smaller areas in eastern Rondônia and in the 
Santarém area of Pará (Fargione et al., 2008; Gibbs et al., 2008; Fearnside, 2001; 
Morton et al., 2006). The role of China has recently become a dominant factor in the 
advance of soy (Fearnside et al., 2013; Fearnside and Figueiredo, 2015). Even when soy 
is planted in former cattle pastures rather than in freshly felled forest, it has an indirect 
effect on deforestation by displacing ranching activity into rainforest areas, as has been 
shown statistically for movement of this activity from Mato Grosso to Pará (Arima et 
al., 2011). Note that Brazilian diplomats do not accept this effect and were successful in 
getting mention of it deleted from the summary for policymakers for the IPCC’s Fifth 
Assessment Report (Garcia, 2014). 
 

Quantifying the effect of protected areas on deforestation is particularly 
important as a guide to policy in this area. The conservation units created and 
strengthened under the Protected Areas in Amazonia (ARPA) program have been 
shown to have a significant effect in slowing deforestation (Soares Filho et al., 2009, 
2010). Differences in effectiveness in resisting deforestation have been found for the 
various types of reserves, such as those under federal versus state-level control and 
‘integral protection’ versus ‘sustainable use’ categorization in Brazil’s National System 
of Conservation Units (SNUC) (Vitel et al., 2009). Indigenous areas have consistently 
been found to be the most resistant to deforestation, and in many areas in the arc of 
deforestation, indigenous areas represent the only forest that remains standing (Nepstad 
et al., 2006a). 
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The SimAmazonia model in the DINAMICA software by Soares Filho et al. 
(2006) has been an important tool for visualizing likely trends over the 2000-2050 
period. However, for assessing the impact of specific development projects, such as 
opening a highway or creating a reserve, a number of additional features are needed. In 
the case of highways, these projects act as forces increasing the total amount of 
deforestation that takes place, not merely in redistributing the location of a given 
amount of deforestation activity that has been calculated separately based on macro-
economic indicators such as expected growth in gross domestic product (GDP). 
Simulations using DINAMICA indicate a substantial impact from currently planned 
highway projects, such as the re-opening of the BR-319 Highway that would connect 
the arc of deforestation in Rondônia with Manaus in central Amazonia (Fearnside et al., 
2009; see also Fearnside and Graça, 2006). In the case of reserves, there can be a 
significant distortion in the expected amount of deforestation in the reserve area. When 
the baseline deforestation is calculated by multiplying a deforestation rate expressed as 
a proportion of the forest area in a large sub-region (in one case representing about one-
third of Brazilian Amazonia) a large total area to be deforested each year results; when 
this is spatially allocated based on attractive features such as presence of roads and of 
previous clearings, the large area to be deforested is placed in a single corner of the sub-
region, producing unrealistically high clearing rates for this particular location. This is 
the case for the Juma Sustainable Development Reserve (RDS Juma) in the state of 
Amazonas, which is the location of the first Reducing Emissions from Deforestation 
and Degradation (REDD) project (Yanai et al., 2012). 

 
3.2. Monitoring deforestation  
 

There has been a trend to smaller clearings detected by INPE’s PRODES 
program (using LANDSAT-TM with 30-m resolution), with increasing percentages of 
the area deforested each year being in clearings with smaller areas. Deforestation 
estimates with higher resolution sensors will be needed to capture small clearings 
(LANDSAT-TM has a detection limit of 6.25 ha for clearings). High-resolution sensors, 
such as IKONOS or Quick Bird, will also be needed to monitor the narrow strips of 
forest along watercourses that are still considered as areas of environmental protection 
(APPs) under the Forest Code as revised in 2012. The Ministry of the Environment and 
INPE have plans for compiling a higher-resolution mosaic that would at least be able to 
detect the 30-m wide APPs of large properties, but not the 5-m wide APPs of small 
properties. Satellite monitoring linked to Google Earth, aided by on-the-ground input 
from civil society via the internet, is expected to increase the speed and accuracy of 
deforestation monitoring (Tollefson, 2009). 
 

Information on land uses in deforested areas has long been a limitation in 
quantifying net emissions of greenhouse gases. The limitation of deforestation 
monitoring to just two classes, forest and non-forest, does not allow quantification of 
the stock and uptake of carbon in the deforested landscape, forcing calculations of 
emissions to rely on extrapolations from samples in small areas. Especially important 
are estimates of areas of secondary forest and of degraded pasture. An important 
improvement is the Terra Class dataset (EMBRAPA and INPE, 2011; INPE, 2014b; 
Ometto et al. 2016). 
 
3.3. Recent developments in the region 
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Changes in deforestation rates have a direct relation with carbon emissions and 
the rate of depletion of carbon stocks. Deforestation rates in Brazilian Amazonia 
declined markedly from 2004 (when 27.8 × 103 km2 were cleared) to 2014 (when 4.8 × 
103 km2 were cleared) (INPE, 2015). Note, however, that deforestation soared in the 
three months following the July cutoff of the official annual deforestation estimate for 
2014 (Fearnside, 2015). This was followed by the rainy season in Amazonia, when, 
although deforestation rates were also much higher than in previous years, the effect is 
insignificant in terms of the annual total. Whether or not the upturn of deforestation 
beginning in August 2014 signals a sustained rebound, the basic forces driving 
deforestation continue to grow on the long term. 

 
The decline in deforestation rates after 2004 was the result of a variety of 

different forces, with significant differences depending on the location and the year in 
question. From 2004 to 2008 the slowdown can largely be explained by the decline in 
international prices of commodities such as soy and beef and a rise in the value of the 
Brazilian real relative to other currencies, thus decreasing the profitability of exporting 
commodities that drive Amazonian deforestation (Fearnside, 2009a). From 2009 
onwards the trend in deforestation rates diverged from those of commodity indicators, 
indicating that government regulatory measures were having a significant effect 
(Assunção et al., 2012; Hargrave and Kis-Katos, 2011). 
 

Despite the decreases in deforestation rates since 2004, a number of changes 
point in the direction of greater future deforestation. These include the continuing 
increases of the Amazonian population and of investment in the region, the planning 
and construction of ever more highways, dams and other infrastructure projects, and 
some notable changes weakening environmental protections. One is the revision of the 
Forest Code (Codigo Florestal), as finally passed on 25 September 2012 (Law No. 
12.651/12). This greatly reduces (or eliminates) requirements for maintaining forest 
along watercourses and on steep hillsides and, by effectively pardoning most of the past 
violations, creates the expectation that deforestation in violation of the present 
regulations will eventually be pardoned in future ‘amnesties’ (Fearnside, 2010; Metzger 
et al., 2010; Vieira and Becker, 2010; Sparovek et al., 2012). Another serious setback 
for environmental protection is the weakening of the environmental impact statement 
and licensing process by the precedents set in 2011 and 2012 in the cases of the Santo 
Antônio and Jirau Dams on the Madeira River and the Belo Monte Dam on the Xingu 
River (Fearnside, 2012a, 2013b, 2014). By allowing infrastructure projects to be 
approved over the objections of the technical staff of the licensing agencies, and by 
granting licenses without having satisfied the ‘conditionalities’ that had been 
established as preconditions, the door is opened to approving any project no matter how 
great its impacts may be. Other setbacks include a virtually complete halt to creation of 
new protected areas after 2010 (Alencastro, 2014), continued reduction or rescinding of 
existing protected areas (Bernard et al., 2014), and a 72% cut in government funds for 
controlling deforestation in 2015 (Leite, 2015). 

 
Of great concern is proposed legislation limiting the authority of the executive 

branch of the federal government to enforce environmental regulations and to create 
new indigenous areas and conservation units. Requiring congressional approval would 
effectively make it impossible to create more protected areas in the foreseeable future. 
As demonstrated by the recent weakening of the Forest Code, the national congress is 
currently dominated by the ‘ruralist block’ (representatives of large land holders). 
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3.4. Future forces in land-use change 
 

A variety of forces can be expected to affect future trends in Amazonian land-
use change. Brazil’s National Plan for Climate Change (PNMC), and the ‘voluntary 
objectives’ Brazil announced at the 2009 Conference of the Parties of the climate 
convention held in Copenhagen, call for a reduction of the annual deforestation rate to 5 
× 103 km2 by 2020 (CIMC, 2008). This reduction is substantial as compared to the 19.5 
× 103 km2 annual deforestation rate used as the baseline for the plan, but is much less so 
as compared to recent rates (5.8 × 103 km2 in 2013). Nevertheless, achieving this will 
require significant governance efforts given the likely forces acting to increase 
deforestation in the coming years. These include the effects of planned reconstruction of 
key highways (together with the opening of side roads): the Santarém-Cuiabá (BR-163) 
and the Manaus-Porto Velho (BR-319) Highways (Fearnside, 2007; Fearnside and 
Graça, 2006). Roads are generally the key drivers in Amazonian deforestation (e.g., 
Arima et al., 2008; Perz et al., 2008; Southworth et al., 2011). The effect of planned 
dams is already being felt (Barreto et al., 2011). Planned waterways for transport of 
soybeans can be expected to strengthen this deforestation force (Fearnside, 2002). The 
effect of biofuels, including oil palm, may be significant (Fearnside, 2009b). Increasing 
Brazilian exports of beef, along with investments in both deforestation and in pasture 
intensification, represents another significant trend (McAlpine et al., 2010). 
 

Various possible forces have been suggested as acting to reduce deforestation 
pressure in the future. These include increasing urbanization (Wright and Muller-
Landau, 2006); however, various factors make this effect much less than claimed, 
especially the fact that most of the people moving to cities are not from the major 
groups of actors in Amazonian deforestation (Fearnside, 2008b). Another is the effect of 
a moratorium on soy purchases from land deforested for this crop (Gibbs et al., 2015a; 
Nepstad et al. 2014). Certification of cattle ranches and slaughter houses is also being 
promoted as a means of decreasing deforestation pressure (Gibbs et al., 2015b; Nepstad 
et al., 2006b, 2014; Newton et al., 2014). Note, however, that a variety of practices 
allowing ‘leakage’ and ‘laundering’ reduce the effectiveness of these agreements at 
present (Gibbs et al., 2015b). Similar challenges face timber certification that is 
promoted both by the government and by NGOs as a means of encouraging sustainable 
forest management (e.g., Barreto et al., 1998). The net effect of the spread of 
“sustainable” forest management is much more complicated than is often portrayed 
because of economic contradictions and regulatory loopholes that can make the 
management plans a mere front for obtaining authorization for harvesting and 
transporting the logs, but with future conversion to deforested land uses as the ultimate 
result (Fearnside, 2003). 
 

One of the most controversial topics regarding future deforestation is the 
potential role of reducing emissions from deforestation and degradation (REDD). 
Potential benefits include reducing clearing in private properties (Stickler et al., 2009) 
creating protected areas (Nepstad et al., 2011) and implementing a variety of policy 
changes for reducing deforestation (Moutinho et al., 2011a,b). Challenges include the 
proper accounting for leakage (Fearnside, 2009c; Yanai et al., 2012) and a series of 
unresolved controversies ranging from how the carbon accounting is done to how the 
resulting funds are used (Fearnside, 2012b,c). Many have strong opinions on REDD, 
favoring either throwing it out altogether or working to fix its problems. Strong reasons 



10 
 

to solve the very real problems that face REDD include the still significant amounts of 
carbon emitted annually by Amazonian deforestation, the very large stocks of carbon in 
the remaining forest at risk of future emission, the lower cost and greater speed of 
avoiding deforestation emissions as compared to many other mitigation options, and the 
substantial non-carbon environmental benefits and social gains from maintaining 
Amazonian rainforest. 
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Figure legend: 
 
Figure 1 – Brazilian Amazonia and locations mentioned in the text. Dams: (1) Jirau, (2) 

Santo Antônio, (3) Belo Monte; Cities: (4) São Paulo, (5) Santarém, (6) Cuiabá, 
(7) Porto Velho, (8) Claúdia, (9) Manaus, (10) Belém; Other: (11) PDBFF, (12) 
Ducke Reserve, (13) RDS Juma. 
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