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Abstract 
The classification of a hydropower scheme as run-of-the-river (or run-of-river; ROR) evokes an 
image of a low-impact installation; however, examination of eight case studies worldwide shows 
that substantial negative societal and ecological impacts are tied to them, albeit in somewhat 
different ways. We conclude that ROR dams not only potentially displace communities, disrupt 
livelihoods, and degrade environments in surrounding areas, but they also divert water from areas 
of need, impact aquatic ecology through habitat destruction and disruption of fish migration, emit 
non-trivial amounts of greenhouse gases over the lifespan of the project, and disrupt streamflow 
in downstream river sections. While these negative impacts vary on a case-by-case basis, medium 
and large ROR dams consistently have multiple and cumulative impacts, even when not having 
appreciable reservoirs. We contend that many impactful dams do not qualify as low-impact ROR 
projects, despite being defined as such. Such mislabeling is facilitated in part by the ambiguous 
definition of the term, which risks the ROR concept being used by proponents of impactful 
structures to downplay their negative effects and thus mislead the public or gain status, including 
within the Clean Development Mechanism in relation to mitigating climate change. 
 
Keywords: Run-of-the-river, hydropower, dams, EIA, hydropeaking 
 
1. Introduction 
While hydropower has benefited parts of society for more than 150 years (e.g. Von Sperling, 2012; 
Harrison 2019), their dams have often resulted in myriad negative social and environmental 
impacts (Baxter 1977; Goldsmith and Hilyard 1984; McCully 2001; Scudder 2005; McManamay 
et al. 2015). Beyond scholarly critiques, many communities have long raised grave concerns about 
the negative impacts, lending on-the-ground voices to express mounting worries regarding the 
integrity of ecologies of local riverscapes and livelihood resources (Goldsmith and Hilyard 1984). 
Dams constructed on international rivers also remain a tense geopolitical conundrum (Hirsch 
2016). A current wave of apprehension focuses on the uncertain role hydropower dams can play 
in decarbonizing the energy production efforts during a period of climatic uncertainty (cf. Carvajal 
and Li 2019; Harlan 2020; Sasges and Ziegler 2024).   
 
Since the late 20th Century, the dam-building industry has faced significant resistance to new 
development from a variety of actors, including local communities, activists, ecologists, and 
international financiers (McCully 2001; Scudder 2005; Shoemaker and Robichaud 2018). Thus, 
amidst a period of polarization that pitted proponents of hydropower for economic development 
against those advocating against it due to environmental costs and social justice concerns 
(Goodland et al. 1993), the industry began reshaping in an attempt to diminish negative public 
perception, including advocating for somewhat smaller hydropower facilities (HPFs) and also 
focusing on improving public relations. This approach also paved the way for the construction of 
new large dams, albeit with reduced reservoir sizes. This partially but incompletely addressed 
concerns of large-scale human resettlement, the loss of sensitive or productive lands, and the 
dramatic disruption of environmental flows in rivers and streams (Cernea 1999; Cernea and 
McDowell 2000; Scudder 2005; Randell 2022).  
 
Many of these structures were labelled "run-of-river" or “run-of-the-river” (ROR) dams and were 
often promoted as “environmentally friendly” (Jager and Bevelhimer 2007). Unfortunately, much 
of this infrastructure has not resulted in the benefits claimed by proponents (Venus et al. 2020). 
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Contrary to the imagery evoked by the term, ROR dams are not designed to preserve the integrity 
of all types of environmental flows. Nearly three decades ago, Roberts (1995) used the phrasing 
“ruin-of-the-river” in reference to 12 proposed mainstream dams of 32 to 46 m height on the 
Mekong River that would have severe consequences on the aquatic resources and livelihoods of 
local people, as they are all located at critical locations on the mainstream of the river. These high 
dam facilities were, and still are, promoted as ROR. 
 
Complementing the rebranding of hydropower dams as ROR is the positioning of hydroelectricity 
as “green energy” or “climate change friendly energy” (Kahn et al. 2014; Baird and Green 2020). 
While it may be true that ROR schemes frequently have smaller reservoirs than the early mega-
dams, an important consideration pertains to conjuring the idea that all ROR dams are firstly small, 
and, secondly, that they are socially and environmentally benign. Recent reviews suggest 
otherwise (cf. Csiki and Rhoads 2010; Anderson et al. 2015; Kibler and Tullos 2013; Kelly-
Richards et al. 2017; Hennig and Harlan 2018; Kuriqi et al. 2021). 
 
This paper challenges prevailing narratives by examining case studies that highlight the significant 
impacts of ROR dams in Europe, Asia, South America, and North America. The eight case studies 
presented are based on research conducted by one or more of the authors. These dams vary in size, 
from 10 MW to over 3,000 MW, and are built on diverse systems, from small mountain streams 
to large continental rivers. Despite these differences in technology and scale, all are labeled as 
ROR. The lack of standardized design is a central theme of this paper, as is the ambiguity of the 
term "run-of-the-river," which allows it to be used as a rhetorical device to mislead the public, 
financers, and government sectors, enabling significant disruption of sensitive riverscapes for 
profit, often under the guise of development and climate change mitigation. Our goal is not merely 
to criticize hydropower development but to place our findings within the context of existing 
research and evaluate whether "run-of-the-river" is a meaningful descriptor for the types of 
projects that it actually describes. 
 
The paper proceeds as follows. We first briefly present eight case studies of hydropower dams in 
various parts of the world that developers define as ROR. We then provide a short synthesis of the 
case studies before briefly reviewing the ROR dam literature related to impacts. We finally provide 
some concluding remarks. 
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Figure 1. Map of the locations of case studies included in this paper (source: authors) 
 
2. Case Studies 
2.1 FISH MIGRATION DISRUPTION: Pak Mun Dam, Thailand 
The Pak Mun Dam in northeastern Thailand exemplifies how medium-sized ROR dams can cause 
significant environmental and social harm, particularly when situated in locations that obstruct 
critical seasonal fish migrations (Roberts 1995). In 1967, Thailand's National Energy Office 
proposed the Pak Mun Dam on the Mun River, a major Mekong tributary in Ubon Ratchathani 
Province. Initially planned with a large reservoir requiring mass resettlement, it was later 
redesigned as a smaller ROR dam to reduce displacement. Construction began in 1990 and finished 
in 1994. The 17 m high dam has a 136 MW capacity, but actual energy output has been lower than 
expected (Missingham 2003; Foran and Manorom 2009).  
 
Despite its downsizing, the Pak Mun Dam has still caused significant impacts on people forced to 
resettle due to the creation of the dam’s 60 km2 reservoir. However, the project’s most significant 
impacts, including in relation to the number of people negatively impacted, have been on seasonal 
fish migrations between the mainstream Mekong River and the Mun River Basin. Many species 
migrate up and down the Mekong River during different seasons (Baird et al. 2003; Baran et al. 
2005), and the Pak Mun Dam has heavily disrupted many fish migrations that previous migrated 
upstream from the dam (WCD 2000). Also affected were tributaries of the Mun River that were 
not originally assessed as affected, and therefore, those impacted have never been compensated 
(Baird et al. 2020).  
 
The Pak Mun dam's negative impacts on wild capture fisheries have been so severe that since its 
construction, considerable effort has been devoted to advocating for either opening the dam’s gates 
at certain times of the year or throughout the year to enable fish migration (Foran and Manorom, 
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2009). Women have been at the forefront of this resistance, adapting older cultural rituals and 
developing new ones to maintain their opposition to the project (Soukhaphon and Baird 2024). 
Additionally, the fish ladder added to the dam was poorly designed and has proven ineffective 
(Roberts 2001). 
 
At one point, the Pak Mun Dam likely stood as the most devastating dam for fisheries ever 
constructed in the Mekong River Basin, despite being a ROR dam (WCD, 2000). More recently, 
Ziv et al. (2012) estimated that another highly contentious ROR dam, the Lower Sesan 2 dam in 
northeastern Cambodia, would become the most damaging dam to fish ecology and fisheries in 
the Mekong Basin. This project is situated along a crucial migratory fish passage. These two 
projects highlight that ROR dams can be devastating when it comes to obstructing vital fish 
migrations. 
 
2.2 BIODIVERSITY: Danube Salmon 
Three proposed small-scale (<10 MW) ROR hydropower projects planned for the Mur River in 
Central Europe are a grave threat for Danube salmon (Hucho hucho), the world’s largest salmonid 
species, which is endemic of the Danube River basin (Holčík et al. 1988) and is symbolic of the 
region’s ecological heritage. In recent decades the salmon have faced extensive habitat loss and 
hydropower-related impacts (Schmutz et al. 2002). Once widespread, this flagship species is now 
one of the most threatened species in the catchment (Freyhof and Kottelat 2008) and is protected 
under European conservation law (Annex II and V of the EU Habitats Directive - 92/43/EEC). 
Recent assessments in Bavaria, Germany, and Austria (Schmutz et al. 2023) revealed that merely 
0.7% of its original 7,500 river kilometers habitat range still hosts very good populations, with 
most rivers showing only moderate to poor population status, reflecting fragmented habitats and 
dwindling reproduction rates (Schmutz et al. 2023). This situation underscores the urgency of 
safeguarding the Danube salmon.  
 
In Austria, the last bastions of Danube salmon persist in three (sub-) catchments: the Mur, Gail, 
and Pielach Rivers. These fish, known for their migratory behavior and preference for gravelly 
substrates, are critically dependent on free-flowing rivers. Notably, the few remaining (very) good 
Danube salmon populations in Austria are mainly located in rivers with longer free-flowing 
sections (>50 km), defined as river sections without dams, impoundments, and flow alterations 
(water abstraction, hydropeaking), such as the Mur and Gail Rivers (Figure 2). In addition, Danube 
salmon stocks in the mainstem Danube and lower Mur River suffer from increased summer 
temperatures. These pressures have led to severe declines in Danube salmon stocks in Austrian 
rivers (Schmutz et al., 2023), which have been further compounded by losses in prey species such 
as European grayling (Thymallus thymallus) (Hayes et al. 2021), nase (Chondrostoma nasus), and 
barbel (Barbus barbus) (Hayes et al. 2022a). 
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Figure 2. Former and present distribution of Danube salmon in Austria, remaining rivers with free-

flowing river sections (>50 km), and the planned hydropower plants at the Mur River (data 
source: Schmutz et al., 2023). 

 
Despite generating a mere 0.3% (120 GWh) of Austria’s annual hydropower output, the three 
proposed ROR projects pose a significant risk to the last upper Danube River stretches harboring 
robust Danube salmon populations. Alarmingly, some of these projects are situated within Natura 
2000 protected areas. Despite environmental campaigns against them, politicians have largely 
supported their development plans are largely supported by politicians, and Europe’s emergency 
council regulation (EC 2022/2577) has also supported them in their push for more renewable 
energy.  
 
This case study underscores the critical need to scrutinize ROR hydropower expansion, 
considering the ongoing biodiversity crisis and the imperative to safeguard this irreplaceable 
species for future generations, particularly given the limited energy benefits provided by these 
relatively small-scale projects. 
 
2.3 HYDROPEAKING: Austria-wide survey 
This case study explores the large-scale potential of ROR hydropower to cause sub-daily flow 
fluctuations (Almeida et al. 2020), a phenomenon commonly associated with storage hydropower 
(i.e., hydropeaking), and which cause severe impacts on river ecosystems (Hayes et al. 2022b; 
Schmutz et al. 2015). To this aim, sites situated within Austrian mountain rivers (Hayes et al. 2021) 
were categorized into three groups based on their peaking frequency (Figure 3a): low (<0.2 daily 
peaks), medium (0.2–2.1 daily peaks), and high (>2.26 daily peaks). River sections experiencing 
medium to high levels of flow fluctuation frequency were predominantly found near peak-
operating hydropower plants (Figure 3b). Intriguingly, some negatively affected sites were 
discovered close to ROR hydropower plants, even when no peak-operating storage dam was 
present in the upstream catchment, lending evidence that ROR facilities can contribute to sub-daily 
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flow fluctuations. However, this is not always the case, as evidenced by sites classified under the 
'low' category (Figure 3c). 
 

 
Figure 3. Hydro-ecological effects of artificial flow fluctuations at Austrian fish sampling sites 

(n=69; Hayes et al., 2021). This figure categorizes the sites into ‘low’, ‘medium’, and 
‘high’ groups based on (a) the peaking frequency terciles. Panels (b) and (c) illustrate the 
proximity of each site to the nearest hydropeaking (HP) or ROR power plant, respectively. 
Panels (d) and (e) present ecologically relevant flow fluctuation metrics (amplitude and 
down-ramping rate), each normalized against the long-term mean annual maximum flow 
event (Greimel et al., 2016; Greimel, 2022). Panel (f) depicts the response of the ‘Fish 
Index Austria’, a fish-based measure of ecological integrity (1 being best, 5 worst). Group 
differences were determined with the Kruskal-Wallis (KW) test, followed by pairwise 
comparisons with the Mann-Whitney U test. 

 

Sites characterized by having a low peaking frequency experienced events with the highest 
amplitudes compared to those in the medium and high frequency groups. These significant flow 
fluctuations predominantly constitute natural floods. Conversely, the peak amplitudes observed in 
the medium and high frequency groups are significantly lower (Figure 3d), which is likely due to 
the maximum turbine flow of the hydropower plants and a corresponding limitation of the artificial 
flow fluctuation amplitude. Sites experiencing medium to high event frequencies are distinguished 
by rapid down-ramping rates (Figure 3e), which can have significant ecological impacts, including 
fish stranding (Hayes et al. 2022b; Moreira et al. 2019). These hydrological pressures result in a 
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decline in ecological integrity, as evidenced by the scores from the multi-metric ‘Fish Index 
Austria’, indicating step-wise degradation (Figure 3f). 

This study on Austrian rivers reveals that ROR hydropower installations often produce a high 
frequency of sub-daily flow fluctuation events, like traditional hydropower plants with large 
storage. Others have indicated that ROR installations can cause such flow variations, for example, 
due to delayed reactions of the power plant flow control, low flow stoppages, system start-ups, 
powerhouse breakdowns, intake malfunctions, cycling operations, and forebay oscillations 
(Greimel et al. 2016; Hunter 1992). While these artificial fluctuations have a smaller amplitude 
than natural floods, they occur frequently and exhibit a fast down-ramping intensity, thus causing 
significant negative impacts on river ecology.  
 
2.4 TRANSBASIN WATER TRANSFER: Theun-Hinboun Dam, Laos 
The Theun-Hinboun Dam in Central Laos illustrates how some projects are classified as ROR 
despite having nothing to do with maintaining natural flow regimes. The Theun-Hinboun 
Hydropower Project, which is located in Bolikhamxay and Khammouane Provinces in the Lao 
People’s Democratic Republic (Lao PDR), originally had a 220 MW installed capacity when it 
started operations in 1998. In 2012 the project was expanded to 500 MW capacity. The dam was 
developed in partnership between the Lao government, Thailand’s MDX Lao Public Company, 
and Nordic Hydropower AB, with considerable loans to the Lao PDR government from the Asian 
Development Bank.  
 
The dam was built based on a 30-year “build–operate–transfer” (BOT) agreement with a 10-year 
optional extension period, after which the dam would become fully owned by the Lao government 
(Shoemaker 1998; Whitington 2018). The original project included a large 48 m high dam across 
the Theun River, a 49 km2 reservoir, and infrastructure to facilitate the diversion of water from the 
dam’s reservoir through a power generation plant and then into the Hai and Hinboun Rivers, 
tributaries to the Mekong River. The expansion was agreed to in 2007, and involves a 65 m high 
dam, and a 105 km2 reservoir on the Gnouang River. 
 
As various studies have indicated, the dam has led to a significant increase in water flow down the 
Hai and Hinboun Rivers to the Mekong, sometimes more than double the previous levels (Barney 
2007; Blake et al. 2005; Shoemaker 1998). This diversion has resulted in well-documented 
downstream social and environmental impacts, including significant losses and long-term 
consequences for downstream communities, such as riverbank erosion, the destruction of aquatic 
habitat, and various impacts on human livelihoods, such as the loss of riverbank gardening and 
dramatic declines in fish catches (Barney 2007; Blake et al. 2005; International Rivers Network 
1999; Shoemaker 1998; Warren 1999; Whitington 2018). In contrast, the reduction of flows in the 
Theun River has resulted in substantial social and environmental impacts downstream on the 
Theun (Shoemaker 1998; Warren 1999).  
 
This example highlights a discrepancy in the application of the term ROR to describe the flow 
situation on the river where the facility was built. A crucial aspect is the diversion of water from 
one river (the Theun) to others (the Hai and Hinboun), is the categorizing of the diversion project 
as a “transbasin run-of-the-river project” (Shoemaker 1998; Warren 1999). The question arises as 
to whether a dam can be accurately classified as "run-of-the-river" when it redirects water from 
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one river into another. The Theun Hinboun Power Company argues that it can, because the dam 
does not have significant active storage. This indicates how the term "run-of-the-river," at least to 
some actors, does not imply that the river is allowed to flow naturally. Instead, it is a technical 
term that relates to a dam’s active storage. In particular, this reveals how the "politics of 
classification" are employed to divert attention from a project’s serious negative impacts. 
 
2.5 DISPLACEMENT: Belo Monte Dam Complex, Brazil 
Brazil’s Belo Monte complex illustrates the falseness of ROR dams being either small, or “low 
impact.” Belo Monte is classified as ROR because the water level in the reservoir only fluctuates 
by one meter, making the complex depend on the flow of the river. The complex began blocking 
the Xingu River, a north-flowing tributary to the Amazon River, in 2015 (Figure 4). It was 
originally planned that up to five large storage dams upstream would have regulated flow, which 
would have flooded vast areas of Indigenous land (Fearnside 2006). Even though Brazil’s official 
statements since 2008 have claimed that the upstream dams will not be built, turbines with installed 
capacity totaling 11,233 MW have already been installed at Belo Monte (an amount around twice 
the maximum that could be justified by the river’s natural flow), suggesting that plans for the 
upstream dams continue unannounced (Fearnside 2017a). Since 2013, when the dam was under 
construction, Belo Monte has been used by Brazil’s authorities to argue for future projects that 
prioritize water storage (Fearnside 2017b). 

 
Figure 4. Map of the Belo Monte complex and surrounding area (Fearnside, 2017a). 
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The Belo Monte complex consists of two dams: the Pimental Dam functions as an intra-basin water 
diversion scheme. It diverts 80% of the river’s flow through a canal and a series of dammed stream 
basins to a second dam (Belo Monte). The operational mode leaves a 130 km long section of the 
river with only 20-30% of its natural flow. Indigenous communities on the banks of this section of 
the Xingu River, known as the “Volta Grande” (or “Big Bend”), lost the fish and turtles that 
previously sustained them, as did a third group located on the Bacajá River, a tributary (Pezzuti et 
al. 2024). 
 
The 516 km2 reservoir created by the dam displaced 40,000 people, according to the Movement 
for Dam Affected People (Sullivan 2016), including both traditional riverside residents 
(ribeirinhos) and one-fourth of the city of Altamira. The displaced people were moved to 
“collective urban resettlements” on the outskirts of Altamira, where they had no income or means 
of producing food. Ribeirinhos and the Indigenous Peoples who remained along the Volta Grande 
lost almost all fish and other resources that sustained them (Magalhães and da Cunha 2017).  

 
Besides displacing people, the Pimental Dam also blocked the migration of fish, despite having a 
fish passage, as most Amazonian fish fail to pass these barriers. Both the area flooded by the 
reservoir and the Volta Grande had rich endemic fauna that has now been severely damaged 
(Keppeler et al. 2022). The most famous victim is the zebra pleco (Hypancistrus zebra), a valuable 
aquarium fish adapted to rocky habitats in rapids. This species is expected to go extinct in the wild 
(Gonçalves 2011). The rapid variations in water level have taken a heavy toll on commercial fish 
species during the spawning season because they enter flooded forest areas that suddenly become 
either dry land or isolated pools of intolerably hot water (Ribas et al. 2023).  

 
The Belo Monte complex also accelerated deforestation (Jiang et al. 2018) by attracting people to 
the area and increasing land values and yielding profits from land speculation (Barreto et al. 2011). 
Furthermore, a study measuring greenhouse gas (GHG) emissions at Belo Monte concluded that 
“...total GHG emissions are substantial even from this leading-edge ROR power plant. This argues 
in favor of avoiding hydropower expansion in Amazonia regardless of the reservoir type” 
(Bertassoli Jr. et al. 2021). The Science Panel for the Amazon concluded that no more dams of any 
type with installed capacity ≥10 MW should be built in Amazonia (Fearnside et al., 2021), as even 
dams smaller than 10 MW can cause significant impacts depending on various factors. 
 
It may be a surprise to many that ROR dams are sometimes quite large and can result in large-
scale human resettlement as well as many of same sorts of impacts associated with large storage 
dams. 
 
2.6 LIVELIHOOD DISRUPTON: Rainy River International Dam, USA-Canada border 
The 24.4 MW International Dam spans the Rainy River between Minnesota (USA) and Ontario 
(Canada). Because of the area’s flat topography, this comparably small dam (9.1 m height) 
maintains the water level in the 932 km2 Rainy Lake (Gojiji-zaaga'igan), a former wetland turned 
reservoir. European-descended residents and seasonal tourists typically only pay attention to the 
dam in high water years when lake water could have been released sooner to avoid flooding 
(Kraker 2022; IRLWWB 2023). However, the Indigenous Anishinaabeg in the area perceive the 
dam differently.  
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Prior to the construction of the dam between 1905 and 1909, the marshes above the dam sustained 
abundant Manoomin (wild rice, Zizania palustris) crops that sustained Indigenous Peoples for 
millennia (Birk and Richner 2004; Reid and Rajnovich 1991). Pushed by the newsprint industry 
and enabling settler-colonial governments, construction of the dam and others in the area virtually 
destroyed the Anishinaabe wild rice economy. Manominikenshii, the Anishinaabe wild rice 
culture, evolved under specific hydrological conditions regarding seasonally variable water levels, 
temperature, pH, turbidity, and nutrient loads affected by natural conditions, localized 
management (e.g., impoundment of bays and streams, seeding), and Ceremony (Strube 2021; 
Kinew 1995; Waisberg 1984). The dam, despite its characterization as a small ROR facility and 
temporary impoundment, has disrupted this delicate ecological system, upsetting the 
Anishinaabe’s relationship with Manoomin with grave consequences for the Anishinaabeg’s 
livelihood and sovereignty (Strube and Thomas 2021). Anishinaabe communities on the lake’s 
southern shore migrated south due to the dam’s effects on their economy (Child 2011). Without 
their main food staple, the Anishinaabeg on the Northern shore lost much of their autonomy and 
became increasingly dependent on the settler-colonial state, which in turn expanded its reach into 
this borderland through industrialization dependent on hydropower and water-level regulation 
(Strube 2021; Strube and Thomas 2021).  
 
That a dam with such far-reaching impacts can be perceived by settlers as innocuous is the result 
of several discursive moves. Most critically, the hydrological studies and deliberations informing 
water regulation on the Rainy River have long erased Indigenous Peoples as political agents and 
rightsholders. Consequently, dam operations have long ignored wild rice and instead privilege the 
interests of waterfront residents, tourism, and local industry by providing constant lake levels. 
 
Today, the facility is depicted by the operator as a “run-of-the-river plant” that is subject to 
restrictions on peaking operations, including adherence to Rainy Lake rule curves, minimum flow 
requirements, and control orders set by the International Joint Commission. However, while the 
dam does not retain and release water on demand like storage dams typically do, it does hold back 
water for “a few days,” as one of the operating engineers admitted. Contradicting their public 
relations department’s framing, an engineer called into question the characterization of the dam as 
ROR, instead offering “intermediate semi-run-of-river” as an alternative, yet similarly misleading 
classification (Strube 2021). This case study shows that reimagining older dams as ROR projects 
focuses public attention on environmental flows that align with contemporary management 
protocols, meanwhile detracting attention from significant negative impacts on local communities. 
 
2.7 GREENWASHING: Đăk Psi 3 and 4 cascade, Central Vietnam  
Despite its relatively short length of 81 km, the Đăk Psi River in Central Vietnam’s Kon Tum 
province is the site of ten hydropower facilities on its main stem and tributaries. The Đăk Psi 3 (15 
MW) and 4 (30 MW) cascade (hereafter DP3-4) was the first constructed, from 2007 to 2012. The 
project was subsidized through the Clean Development Mechanism (CDM) of the United Nations, 
which grants certified emission reduction credits to corporations that invest in renewable energy 
projects (Martins et al. 2013; Erlewein 2014). As part of CDM certification, the project was 
designated as ROR, which from the perspective of Vietnamese officials, implies minimal 
environmental impacts.  
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CDM-related and environmental impact assessment (EIA) reports consistently refer to the project 
as ROR; and diagrams depict the construction of “weirs’’ without reservoirs, allowing for 
continuous flow. However, as built, the weirs create reservoirs and obstruct the flow of water, 
materials, and organisms (Figure 5). The claim that the project is ROR rested on the use of 2-3 
km-long diversion tunnels leading from the weirs to powerhouses from where water was 
discharged back into the river channel.  

 
Figure 5. (A) Redrawing of the schematic of the Đăk Psi 3-4 project submitted for EIA and CDM 
approval, circa 2011 (Dak Psi, 2023; the original orientation and features/elements are maintained, 
except those highlighted in red). (B) Đăk Psi 3-4 cascade circa 2021. Structures labelled “weirs” 
function as dams, creating 15-25 ha reservoirs and limiting downstream flows along a length of 2-
3 km. 
 
ROR labeling was crucial both to securing CDM financing and a positive EIA. The CDM Project 
Design Document states the following (UNFCCC 2006): “Đăk Psi 3, 4 Hydropower Project is a 
run-of-river type. … Therefore, the negative impacts are fairly limited in scope.”. In turn, the EIA 
and consultative process carried out prior to the dam’s construction proceeded from the assumption 
that a small ROR facility would have limited environmental impact. It did not highlight some of 
the most important foreseeable impacts of the facility, including the blocking of environmental 
flows, ecological fragmentation, and the dewatering of downriver reservoirs. Impact assessments 
focused on short-term effects during construction rather than the long-term impacts on local 
ecologies. 
 
Contrary to the scenario sketched out by project backers, the years since the construction of the 
dams along the Đak Psi have seen the transformation of the river’s ecologies. After completion, 
the stream section below the dam became dewatered. Villagers describe how, before the dam, the 
riverbanks were rocky and supported lush green trees. Today, due to increased sedimentation 
downstream, sand has filled up the riverbed, raising the water and exposing farmland along the 
riverbank to floods during the wet season. In addition, during the dry season, water levels in the 
river are insufficient for their daily human needs (Du Toan 2022). 
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In this case, the transformation of local lives, livelihoods, and ecologies was justified in the name 
of the decarbonization of energy production. CDM financing is intended to support green, carbon-
offsetting projects that would not otherwise be built due to a lack of capital. However, the 
construction of Đak Psi 4 began in 2007, one year before the project’s operators applied for CDM 
financing. Thus, the carbon credits associated with the CDM financing effectively subsidized 
further fossil fuel use, resulting in a net gain in carbon emissions and implicating DP3-4 in a global 
system of “greenwashing” of hydropower, which has been termed the “theater of decarbonization” 
(Sasges and Ziegler 2023; 2024). The DP3-4 cascade case study demonstrates how manipulation 
of terms supports greenwashing, silencing critiques of hydropower project impacts. This is part of 
a global rhetoric exploiting the idea that all hydropower, regardless of its specifics, helps reduce 
climate change.  
 
2.8 CUMULATIVE IMPACTS: Jirau and San Antonio Dams, Brazil 
Brazil’s Santo Antônio and Jirau hydroelectric plants on the Madeira River, a key Amazon 
tributary, were completed in November 2011 and September 2012, respectively. These are the first 
dams in the Madeira River complex. Both projects contribute to the regional power grid, with 
installed capacities of 3,580 MW (Santo Antônio) and 3,750 MW (Jirau). Being very large dams 
at 49.5 m (Santo Antônio) and 62 m (Jirau), it is not surprising that grave concerns were raised in 
their Environmental Impact Report (RIMA) and EIA. The environmental agency also faced intense 
political pressure to approve licensing (Fearnside 2014a). These dams are classified as ROR 
because there is very little fluctuation of the water level behind them, and because power is being 
generated by the river’s natural flow rather than by drawing down stored water (Fearnside, 2014a). 
During the licensing process, documents such as the strategic environmental evaluation and the 
economic viability study prominently featured a photograph of a ROR dam with no reservoir, 
located on Europe’s Danube River, falsely implying that the Madeira River dams would be 
similarly reservoir free (Fearnside 2014b). 
 
The dams in the Madeira River have disrupted the distribution of fish throughout the basin, which, 
in turn, has impacted the livelihoods and food security of over 50,000 people across Peru, Bolivia, 
and Brazil (Doria et al. 2018). The Santo Antônio and Jirau Dams have negatively affected the 
migration of the large catfish, Brachyplatystoma rousseauxii, known as "dourado," which, prior 
to the dams, was responsible for generating over 14,000 tons of fish biomass just in the Brazilian 
portion of the river. Dourado migrated from the mouth of the Amazon River and ascended the 
Madeira River to reproduce in the Bolivian and Peruvian Andes, and larvae and juveniles 
descended to the Amazon River’s mouth. The Santo Antônio and Jirau Dams now obstruct the 
migration of both adult and juvenile fish (Hauser et al. 2019). 
 
Dam construction raised the Madeira River’s average water level by 10 m, reshaping the landscape. 
The flooding associated with the complex created backwater zones at tributary junctions, causing 
chemical changes and thermal stratification. The flooded area following the installation of the 
Madeira complex exceeded the planned area by 341 km2 (64.5%), submerging an additional 160 
km2 of natural forest (Cochrane et al. 2017). These losses have had profound social consequences, 
displacing thousands of people from their homes, destroying their livelihoods, and significantly 
reducing their access to food (Fearnside 2014a). 
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The decomposition of inundated plant biomass, coupled with the formation of backwater regions, 
introduces an additional concern related to the Jirau and Santo Antônio Dams: the release of 
greenhouse gases. Dams in the Amazon region emit methane (CH4) and carbon dioxide (CO2) 
from both the vegetation and the soils that are flooded, and the emissions from the flooded 
vegetation elevate CH4 emissions by 33% and CO2 emissions by 28%, compared to the soil alone 
(de Faria et al. 2015). Collectively, the Jirau and Santo Antônio Dams will emit an estimated 
average of 76 Tg of carbon over 100 years, equivalent to nearly 800,000 tons of carbon annually. 
 
These dams received carbon credits through the CDM (see Vietnam case study above) despite 
having been built for reasons unrelated to carbon reduction, thereby allowing the countries that 
purchased these credits to emit without really offsetting carbon emission, thus contributing even 
more to global warming (Fearnside 2015). Carbon projects often assume hydropower dams have 
no emissions; however, methane generated in stratified tributaries entering the Santo Antônio 
reservoir has been found to be released in substantial quantities downstream of the dam (Fearnside, 
2015). These findings underscore the fact that ROR projects can have significant environmental 
and social impacts, including cumulative impacts, both locally and regionally, as well as 
significantly contributing to greenhouse gas emissions. 
 
4. Discussion 
4.1 Synthesis of case study impacts 
The case studies in Section 3 reveal how the term "run-of-the-river" (ROR) has been inconsistently 
applied to hydropower facilities of varying designs and scales. In addition, the labeling of these 
dams as ROR by developers often fails to reflect their significant environmental and social 
impacts. For instance, the construction of Brazil's Belo Monte Complex resulted in the 
displacement of approximately 40,000 people, highlighting severe social consequences akin to 
those criticized in mega dam projects. Similarly, the Santo Antônio and Jirau Dams on the Madeira 
River, with heights of 50-60 m, created reservoirs nearly two-thirds larger than anticipated, 
flooding 16,000 hectares of natural forest beyond the predicted area. 

Damming the Rainy River has led to the loss of wetland habitats long crucial to the Indigenous 
Anishinaabe peoples, echoing a broader trend of livelihood disruptions caused by large ROR dams. 
Such impacts extend to other groups affected by dams such as Pak Mun in Thailand and Theun-
Hinboun in Laos, where hydrological changes and other ecological impacts have been significant. 

Ecologically, ROR dams can severely disrupt fish migrations, fragment fish populations, and 
damage critical habitats, as seen with the Pak Mun Dam in Thailand and the series of ROR dams 
along Austria's Mur River. A particularly concerning issue is turbine mortality for downstream-
migrating fish, even with mitigation measures like bar racks and migration corridors. This 
mortality, especially for juvenile and small-bodied fish, varies by species and turbine type, but the 
cumulative effects from multiple passages can drastically reduce fish populations (Knott et al. 
2023a, b; Pracheil et al. 2016; Radinger et al. 2022). 

Although ROR dams have often been associated with maintaining environmental flows or 
replicating natural downstream patterns (Dyson et al. 2003; Hayes et al. 2018), the case studies 
presented here demonstrate that water diversions and hydropeaking can significantly affect 
downstream flow regimes. For example, the Theun-Hinboun Dam in Laos diverts substantial water 
flow between river catchments, and Brazil's Belo Monte Dam dramatically reduces flows over a 
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130 km stretch through diversion. Similarly, the Dak Psi 3-4 cascade in Vietnam diverts water 
from the dam to the power plant 2-3 km downstream, leaving the intermediate river reach dry for 
much of the year. In Austria, ROR dams have also caused significant downstream impacts through 
daily hydropeaking, despite lacking the active storage typically associated with such effects. 

Some projects have used the ROR label for greenwashing purposes, including securing 
environmental approvals and funding, despite causing considerable harm. For instance, the Jirau 
and Santo Antônio dams in Brazil and the Đăk Psi 3/4 dams in Vietnam were branded as ROR to 
gain credibility under the CDM, even as they resulted in significant environmental and social 
impacts that were often downplayed or ignored in assessments (Baird and Green, 2020). Ironically, 
these dams also emit substantial greenhouse gases, contradicting the CDM's intentions (Barros et 
al. 2011). 

4.2. Other Evidence of Adverse ROR Impacts 
Complementing the impacts reviewed for the eight case studies in Section 3 are numerous 
investigations conducted worldwide. We found 59 empirical studies on ROR impacts using a 
systematic search on related keywords. These studies are from 20 countries, including Austria, 
Brazil, Canada, China, France, India, Japan, Norway, and the USA. The ROR facilities range from 
small weirs to large dams on international rivers such as the Danube, Rhône, and Columbia. This 
diversity reflects the lack of a common definition or design for ROR dams globally (Csiki and 
Rhoads 2010; McManamay et al. 2016; Kuriqi et al. 2021).  
  
Many studies focus on specific impacts, such as the adverse effects on benthic organism 
communities, including macroinvertebrates (Dessaix et al. 1995; Fanny et al. 2013; Wang et al. 
2016; Anderson et al. 2017; Bilotta et al. 2016; Silverthorn et al. 2018; Mihara et al. 2024). Other 
organisms affected include diatoms (Wu et al. 2010; Wang et al. 2022a, b), algae (Shuka et al. 
2013; Wu et al. 2009), plankton (Li et al. 2018; Rose et al. 2019; Zanon et al. 2024), amphibians 
(Dare et al. 2020), and insects (Malmqvist and Englund 1996). Negative impacts on fish 
community dynamics are also well-documented (Simonović et al. 2021; Baumgartner et al. 2020; 
Ticiani et al. 2023). 
  
For instance, on the Tay River in Scotland, Robson (2013) observe that ROR dams reduced water 
flow in depleted reaches, restricted upstream access, and caused combined barrier and abstraction 
effects. Linares et al. (2018) report that ROR impacts primarily affected dam reservoirs and 
adjacent downstream stretches, facilitating invasive species dominance. Bejarano et al. (2019) note 
that ROR-diversion power plants impact river reaches downstream, particularly in nival and stable 
river types. Magilligan et al. (2021) observe that while ROR dams do not significantly disrupt 
sediment connectivity, they affect ecological connectivity. 
  
Research on the St. Maurice River in Canada shows that ROR dams can disrupt ecosystem 
processes such as carbon cycling and mercury dynamics, potentially leading to elevated mercury 
levels in aquatic organisms (Ponton et al. 2021; Leclerc et al. 2023). Tashiro et al. (2015) report 
that ROR dams can reduce daily gross production and community respiration below dams under 
low flow conditions. Almeida et al. (2019) documents increased biochemical oxygen demand and 
CO2 partial pressure due to the influx and mineralization of organic matter. Sow et al. (2016) 
highlight the role of shallow depths and submerged macrophytes in nutrient and sediment 
retention. 
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Several studies highlight hydro-geomorphological impacts. Reduced stream flow can lead to 
sediment accumulation and erosion downstream due to sediment shortages and increased flood 
velocities (Summer et al., 1994). For a large ROR facility on the Rhône River, significant 
geomorphic changes due to a century-long reduction in sediment supply have been observed 
(Dépret et al. 2019). Other research indicates that low-head ROR dams create conditions of limited 
sediment supply downstream, affecting local and downstream ecological habitats (Casserly et al. 
2020). 
  
In Italy, the River Po experienced significant degradation following ROR dam construction due to 
altered flow regimes and sediment transport disconnection (Bizzi et al. 2015). In Spain, the Upper 
Garonne River saw channel narrowing after ROR dam construction, leading to new management 
practices involving downstream flushing actions (Bulteau et al. 2022). Wildman and MacBroom 
(2005) report that low-head ROR dams cause sediment accumulation and stream widening, leading 
to dam removal. Pearson et al. (2016) note that ROR dams may induce brief periods of sediment 
methane flux to the atmosphere, with potential impacts from dam removal. 
  
From a social perspective, Rousseau (2020) report on greenwashing tactics in Yunnan, China, 
where a dam recognized as ROR caused significant impacts to local villagers. Ullah et al. (2023) 
note that a large ROR plant on the Indus River in Pakistan affected river flow regimes, groundwater 
levels, and land use, exacerbated by inadequate compensatory measures. 
  
In contrast, some studies report minor impacts. Csiki and Rhoads (2014) found that small ROR 
dams in Illinois do not substantially alter channel morphology or act as major sediment traps. 
Hocking et al. (2021) report an increase in rainbow trout biomass due to controlled flow diversions, 
maintaining natural flow regimes. Copeman (1997) observe no adverse effects on sediment and 
benthic invertebrates but cautioned about rivers with more variable flows. Neupane et al. (2023) 
report a favorable increase in ecosystem service values associated with ROR development in 
Nepal, despite significant land use changes. 
  
Finally, in support of the studies from the literature, several syntheses conclude that ROR 
hydropower plants have moderate to significant impacts on river ecosystems. Anderson et al. 
(2015) conclude that ROR schemes can reduce habitat complexity, alter riparian vegetation, and 
disrupt longitudinal connectivity. Csiki and Rhoads (2010) discuss how ROR dams impact river 
geomorphology, potentially causing downstream scour. Gibeau et al. (2017) identify three 
pathways through which ROR hydropower affects salmonids. Kuriqi et al. (2021) emphasize that 
small ROR plants significantly alter natural flow regimes and harm fluvial ecosystems. 
 
4.3. Prospects for Monitoring and Adaptive Management 
The above sections describe socio-ecological impacts of ROR facilities, impacts that are often 
much more seriously than typically recognized. However, a certain degree of mitigation is 
possible. Best-practice mitigation measures often related to the operation of these projects. For 
example, water can be released to more closely mimic natural flows (an environmental flows 
regime). This can include periodic channel-forming discharges (Hayes et al. 2018), water 
releases for the purposes of fish protection (Haug et al, 2022). In addition, fish passes to support 
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migration (Silva et al., 2018) and restrictions on flow ramping (hydropeaking) (Moreira et al., 
2019) can also help partially mitigate the impacts. 
 
However, a strict monitoring scheme is needed at existing facilities to ensure that projects are 
managed to reduce environmental impacts. This needs to include regular assessments of water 
quality (including water temperature) and aquatic biota, but also continuous monitoring of river 
discharge. Involving local people and making data publicly available is also important to help 
ensure that impacts are minimized. The iterative framework of adaptive management can help to 
formulate new management actions by integrating new information and paying close attention to 
both ecological and social factors (Gunderson et al., 2016; Sendzimir & Schmutz, 2018). 
Ultimately, however, we contend that many of the serious negative impacts of ROR dams cannot 
be easily or fully mitigated. 
 
5. Conclusion 
The review of eight case studies, along with numerous studies from the literature consulted, reveal 
that while ROR dams may appear less harmful than large storage dams, they frequently result in 
significant negative impacts, including community displacement, ecological degradation, and 
disruption of local livelihoods. This reality challenges the prevailing perception that ROR dams 
are benign sources of renewable energy.  
 
We identify substantial inconsistencies in how the term "run-of-the-river" is applied across 
different geographical, ecological, and socio-political contexts. ROR is broadly used to describe 
various hydraulic structures built across river channels for hydropower generation, but its 
definition lacks clarity. For some, ROR refers to dams that form reservoirs without active storage 
or have insufficient capacity for seasonal water management. Others use the term to denote dams 
that maintain minimal discharge to preserve environmental flows, or they associate ROR with 
small hydropower facilities, regardless of their specific design. The absence of a standardized 
definition renders the term ROR susceptible to rhetorical manipulation rather than being a precise 
engineering concept. This ambiguity allows hydropower proponents to downplay the potential 
negative impacts of ROR dams. As Csiki and Rhoads (2010) argue, ROR is not a scientific term 
but a commonly accepted phrase in river management, likely derived from older "reservoirless" 
hydroelectric facilities.  
 
Historically, hydropower advocates have used ROR to describe dams with minimal dead storage 
needed for consistent water release to generate electricity. Despite claims that ROR dams allow 
rivers to flow freely, their designs frequently prioritize optimizing water release for power 
generation over maintaining natural river dynamics (Anderson et al. 2015).  Further, definitions 
that describe ROR as systems where discharges approximate the sum of inflows—relying on 
natural flows and minimal reservoir fluctuations—often neglect the impact of structures that 
obstruct two-way flows, significantly disrupting migrating fish and other aquatic organisms. While 
ROR dams often feature smaller reservoirs than traditional storage dams, which may result in less 
severe hydrological alterations and fewer resettlement issues, they can still cause substantial 
disruption to social and ecological systems. This aligns with early warnings from Roberts (1995) 
regarding the detrimental impacts of ROR dams proposed to be built on the Mekong River. 
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In conclusion, the numerous reports of negative impacts of ROR dams challenge the narrative that 
they are inherently clean and sustainable, underscoring the need for a more nuanced understanding 
of ROR facilities. To address this issue, it may be necessary to reserve the term ROR for designs 
that genuinely preserve environmental flows and develop new classifications that more accurately 
reflect the disruptive features of other hydropower facilities. Such measures are essential not only 
to prevent the misleading use of the term ROR but also to foster hydropower development as a 
genuinely renewable energy source that benefits society as a whole. 
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