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Abstract 

Wood density is central for estimating vegetation carbon storage and a plant functional trait 1 

of great ecological and evolutionary importance. However, the global extent of wood density 2 

variation is unclear, especially at the intraspecific level. 3 

 4 

We assembled the most comprehensive wood density collection to date (GWDD v.2), 5 

including 109,626 records from 16,829 plant species across woody life forms and biomes. 6 

Using the GWDD v.2, we explored the sources of variation in wood density within individuals, 7 

within species, and across environmental gradients. 8 

 9 

Intraspecific variation accounted for up to 15% of overall wood density variation (sd = 0.068 10 

g cm-3). Sapwood densities varied 50% less than heartwood densities, and branchwood 11 

densities varied 30% less than trunkwood densities. Individuals in extreme environments (dry, 12 

hot, acidic soils) had higher wood density than conspecifics elsewhere (+0.02 g cm-3, ~4% of 13 

the mean). Intraspecific environmental effects strongly tracked interspecific patterns (r = 14 

0.83) but were only 20–30% as large and varied considerably among taxa. 15 

 16 

Individual plant wood density was difficult to predict (RMSE > 0.08 g cm-3; single-17 

measurement R² = 0.59). We recommend (i) systematic within-species sampling for local 18 

applications, and (ii) expanded taxonomic coverage combined with integrative models for 19 

robust estimates across ecological scales. 20 

 21 

Keywords: wood density, functional trait, biomass, intraspecific variation, aridity, hierarchical 22 

modelling 23 
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1. Introduction 24 

Wood density, the ovendry mass of wood (g) over its fresh volume (cm-3), is an important 25 

plant functional trait in ecology and global change studies. Accurate species-level averages of 26 

wood density are needed for unbiased estimation of aboveground carbon in vegetation 27 

(Phillips et al., 2019). Moreover, wood density defines one of the main axes of global plant 28 

trait variation (Díaz et al., 2016). Generally, high-wood density species are less susceptible to 29 

mechanical, hydraulic or biotic stress (Chave et al., 2009), experience low mortality at the 30 

expense of growth (King et al., 2006; Kraft et al., 2010), and decompose more slowly (Hérault 31 

et al., 2010). Wood density therefore displays distinct patterns across successional and 32 

environmental gradients (Poorter et al., 2019; Šímová et al., 2018) and is a key factor in the 33 

prediction of the global carbon cycle and terrestrial ecosystem dynamics (Sakschewski et al., 34 

2015).  35 

 Wood density varies widely among woody plants, from species with incredibly low-36 

density wood (~0.10 g cm-3 in Jacaratia spinosa (Aubl.) A.DC) to species such as  lignum vitae 37 

(Guaiacum sanctum L.) whose wood is denser than water (~1.05 g cm-3) and therefore sinks 38 

at any moisture level. However, wood density also varies within and among individuals of the 39 

same species (Anderegg et al., 2021; Fajardo et al., 2022; Yang et al., 2023). Intraspecific 40 

variation in traits provides an imprint of how organisms react to changes in their environment 41 

through adaptation and morphological plasticity (Bolnick et al., 2011; Girard-Tercieux et al., 42 

2023; Moran et al., 2016) and can play an important role in ecosystem functioning (Des 43 

Roches et al., 2018). Better knowledge of shifts with ontogeny and along environmental 44 

gradients would improve vegetation models (Berzaghi et al., 2020), predict how species 45 

ranges shift in response to climatic change and disturbance (Anderegg & HilleRisLambers, 46 
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2016), and create more robust wood density maps for assessment of functional diversity and 47 

vegetation carbon stocks (Boonman et al., 2020; Sæbø et al., 2022). 48 

Radial changes within tree trunks and branches are a common source of intraspecific 49 

variation in wood density, usually interpreted as a reflection of hydraulic and mechanical 50 

changes during ontogeny (Wiemann & Williamson, 1988; Woodcock & Shier, 2002). In plant 51 

species with low wood density near the pith, wood density often increases towards the outer 52 

trunk layers, while the opposite may occur in plants with high near-pith wood density 53 

(González-Melo et al., 2022; Hietz et al., 2013; Longuetaud et al., 2017; Plourde et al., 2015; 54 

Woodcock & Shier, 2002), although there are many exceptions to this pattern (Bastin et al., 55 

2015; Osazuwa-Peters et al., 2014). A link between radial variation in wood density and plant 56 

ecological strategies has also been suggested: pioneer plants have low density wood and grow 57 

fast early on, but invest in denser tissues as individuals mature. In contrast, shade-tolerants 58 

build dense tissues initially, but may invest more in diameter growth than tissue density when 59 

reaching the canopy (Bastin et al., 2015; Woodcock & Shier, 2002). However, we do not know 60 

how consistent and important these patterns are at global scales. Radial changes in wood 61 

density do not always map onto ecological strategies (Hietz et al., 2013), may be influenced 62 

by deposition of chemical compounds in heartwood (e.g., non-structural, secondary 63 

metabolites known as “extractives”, Lehnebach et al., 2019), and vary among conspecific 64 

individuals or even within individuals (Osazuwa-Peters et al., 2014). 65 

Wood density also varies along the hydraulic pathway and across plant organs within 66 

an individual, another source of intraspecific variation (Longuetaud et al., 2017; Momo et al., 67 

2020; Schuldt et al., 2013). In trees, for example, wood density has been hypothesized to 68 

increase from trunks to branches, because high density should provide more benefits to 69 

mechanical stability in horizontal branch than vertical trunk wood (Anten & Schieving, 2010; 70 
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van Casteren et al., 2012). However, while branch and trunk wood densities are generally 71 

tightly correlated with one another, there is little agreement on whether branches are more 72 

(Billard et al., 2020; Dibdiakova & Vadla, 2012; Fajardo, 2018; Fegel, 1941) or less dense than 73 

trunks (He & Deane, 2016; Sarmiento et al., 2011; Swenson & Enquist, 2008), and there is also 74 

variation within trunks and branches (Schuldt et al., 2013; Terrasse et al., 2021). A 75 

confounding factor may be that wood density varies less in branches than in trunks: data from 76 

temperate ecosystems show that wood density increases from trunk to branches in species 77 

with low-density trunk wood and shows the opposite pattern  in species with high-density 78 

trunk wood (MacFarlane, 2020). It is unclear whether this pattern generalizes across biomes 79 

and also whether it reflects different functional requirements of branches and trunks. 80 

However, it has been hypothesized that trunk-branch gradients simply reflect radial 81 

ontogenetic patterns between juvenile and mature wood, since more distal organs are 82 

younger and contain higher fractions of sapwood (Gartner, 1995). 83 

 Wood density also varies across individuals of the same species due to differences in 84 

genetics and environments (Zobel & van Buijtenen, 1989). As environmental conditions 85 

become more extreme (drier, less fertile, more shaded, more windy), species are expected to 86 

grow more slowly and invest more resources in dense and stress-resistant tissues (Chave et 87 

al., 2009). Similar effects are expected within species (Anderegg et al., 2021). For example, 88 

individuals that build tissues with narrow conduits and thick fibre and conduit walls should be 89 

more resistant to embolism (Hacke et al., 2001; Olson et al., 2020). In contrast, in warm, fertile 90 

and frequently disturbed environments with high plant turn§over, fast-growing individuals 91 

with low wood density are expected to be more competitive and successful (Muller-Landau, 92 

2004; Yang et al., 2023). However, genetic control over wood density is high, suggesting that 93 

the variation among individuals of the same species is limited (Zobel & Jett, 1995). Wood 94 
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density variation may also be limited by covariation with other traits, and trade-offs between 95 

different wood functions (Anderegg & HilleRisLambers, 2016; Ziemińska et al., 2013). For 96 

example, low-density wood can sometimes be beneficial even in harsh conditions, as low-97 

density species tend to have greater water storage and capacitance (Ziemińska et al., 2020), 98 

a potential advantage in dry environments. 99 

Overall, theory, empirical observations, and common sense predict that wood density 100 

varies predictably within species. However, while many studies find that intraspecific 101 

variation is predictable (Anderegg et al., 2021; Anderegg & HilleRisLambers, 2016; Farias et 102 

al., 2023), just as many do not (Fajardo, 2018; Richardson et al., 2013; Rosas et al., 2019; 103 

Umaña & Swenson, 2019). Intraspecific variation is generally smaller than interspecific 104 

variation (Osazuwa-Peters et al., 2014), so it is easily confounded with measurement errors 105 

and methodological differences in how wood density is determined (Barbosa & Fearnside, 106 

2004; Jati et al., 2014; Vieilledent et al., 2018; Williamson & Wiemann, 2010). To date, the 107 

largest global wood density collections, including the GWDD v.1 (Zanne et al., 2009), do not 108 

systematically record the tissue types and plant organs where measurements were taken. As 109 

a result, there is a fundamental lack of knowledge about the extent of intraspecific variation 110 

in wood density, its determinants within and among individuals, and its implications for 111 

ecological models and carbon estimates in woody ecosystems. In particular, we lack practical 112 

guidelines as to when to exhaustively measure it versus when it can be safely ignored. 113 

Here, we introduce a substantially updated and improved version of the Global Wood 114 

Density Database (GWDD v.2), which more than doubles the taxonomic coverage of the 115 

original database (from 7,555 to 16,829 taxonomically resolved species), increases the 116 

number of records from 16,468 to 109,626, and, as available, includes a detailed description 117 

of where and how measurements were taken within and across individuals. Using these data, 118 
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we addressed the following questions: 1. How large is intraspecific variation in wood density? 119 

2. How much of this intraspecific variation can be explained by differences in wood density 120 

among plant organs? 3. How much of intraspecific variation can be explained by 121 

environmental factors, such  as temperature, water deficit, wind speeds and soil fertility? 122 

Based on our results, we also 4. make a number of recommendations to effectively 123 

incorporate variation among and within individual plants into models to improve predictions 124 

of wood density.  125 
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2. Methods 126 

2.1 Assembling the Global Wood Density Database v.2 127 

The GWDD v.2 is a substantial update of the GWDD v.1, an open-access database that 128 

consisted of a list of 16,468 tissue density values from ca. 7,500 species. It was assembled 129 

from more than 200 sources and included a taxonomic identifier, a region where the 130 

measurement was taken, and a literature reference (Chave et al., 2009; Zanne et al., 2009). 131 

Since its publication, many new wood density values and large trait databases have been 132 

published, and improved methodologies have been developed to improve consistency across 133 

studies (Cuny et al., 2025; Farias et al., 2020; Langbour et al., 2019; Radtke et al., 2023; 134 

Vieilledent et al., 2018; Williamson & Wiemann, 2010). We used this as an opportunity to 135 

expand the database and create a new, improved version. 136 

First, we critically re-examined the original database and updated 42% of entries (n = 137 

6,968, details in Supplementary S1). Second, we included additional wood density 138 

measurements from published and unpublished sources (cf. Supplementary S1). We put 139 

particular emphasis on previously undersampled biomes, such as dry forests, savannas, and 140 

the species-rich tropics. We also included individual measurements instead of aggregated 141 

values and created a comprehensive documentation. The new database contains 45 142 

attributes that report the original values, sampling techniques, and data transformation 143 

methods (Table S1). The database is available online on Zenodo (doi: 144 

10.5281/zenodo.16919509, embargoed until acceptance for publication).  145 

 146 

Wood density definition and conversion factors 147 

In the GWDD v.2 and throughout this study, wood density is defined as ‘basic’ wood density, 148 

the mass of an oven dried wood sample divided by its fresh volume (g cm-3). Wood density 149 
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thus measures the dry mass contained in the wood volume of live plants and is an indicator 150 

of a plant’s investment in woody tissues. When normalized by the density of water (1 g cm-3), 151 

it is also referred to as “wood specific gravity” (g g-1; Williamson & Wiemann, 2010), but 152 

throughout our analyses, we use the term “wood density”. When assembling the GWDD v.2 153 

and in all following analyses, we also included the tissue densities of tree-like monocots 154 

without secondary growth, as this was consistent with common inventory protocols (Condit, 155 

1998; The SEOSAW Partnership, 2021) and global tree databases (e.g., Beech et al., 2017). In 156 

total, monocots contributed 186 records from 91 species most of which were either 157 

Arecaceae (65) or Asparagaceae (18). Since these monocots amounted to less than 0.2% of 158 

the total records, their inclusion had a negligible effect on results.  159 

Different wood density definitions are available in the literature. Green density, the 160 

fresh mass of wood divided by fresh volume, reflects actual plant growing conditions (Niklas 161 

& Spatz, 2010). In the timber industry, a relevant quantity is airdry wood density, the mass of 162 

wood divided by its volume, with both measured at ambient air moisture (~10-15%), 163 

reflecting properties of wood in the conditions in which it is used (Détienne & Chanson, 1996; 164 

FPL, 1999). Ovendry density, i.e., dry mass over dry volume, has also been reported in the 165 

literature (Deklerck et al., 2019), and dendrochronological studies often derive correlates of 166 

wood density variation within and between tree rings with X-ray techniques (Jacquin et al., 167 

2017). Fortunately, air- and ovendry densities can each be converted into basic density 168 

through physical conversion factors (Brown, 1997; Ilic et al., 2000; Sallenave, 1971), and 169 

recent research has shown that this can be done with as little error as 0.015 g cm-3 (ca. 2.5% 170 

of typical mean wood density, Vieilledent et al., 2018). These factors were also applied in the 171 

construction of the GWDD v.2 to maximize the taxonomic and geographic coverage of wood 172 

density. Converted values and the source quantity were recorded in the columns 173 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 28, 2025. ; https://doi.org/10.1101/2025.08.25.671896doi: bioRxiv preprint 

https://doi.org/10.1101/2025.08.25.671896
http://creativecommons.org/licenses/by/4.0/


value_reference and quantity_reference, the conversion factor in wsg_conversion, and the 174 

derived basic wood density value as wsg ("wood specific gravity").  175 

 176 

Aggregation levels 177 

The GWDD v.2 provides extensive information on where and how records were obtained, 178 

which was not available in the GWDD v.1. These new variables include site, an informal 179 

description of the measurement site, longitude and latitude in the decimal system, and 180 

country. The attribution to a region has been revised since GWDD v.1 to better reflect 181 

geographical variation (Table S1). The database also contains information on sample type 182 

(type_sample for “core” or “disk”), measurement location within plants (location_sample for 183 

“trunk”, “branch” or “root”, for example, and type_tissue for “heartwood”, “sapwood” or 184 

“bark”), whether a particular wood density value is the mean value of multiple individual 185 

plants (plant_agg), and how many individuals were aggregated (plants_sampled). If several 186 

measurements were available for the same individual, they were recorded with the same 187 

id_plant. Direct estimates of variation around mean values were not included in the GWDD 188 

v.2, as they were not consistently reported in the literature. Where detailed measurement 189 

information was not available, attributes were left empty (“NA”). These samples were 190 

excluded from analyses of intraspecific wood density variation in this study. 191 

 192 

Taxonomic name resolution 193 

Taxonomic names were newly standardized via the WorldFlora R package (Kindt, 2020) and 194 

the June 2023 version of the World Flora Online (WFO) database (The World Flora Online 195 

Consortium et al., 2023). Taxon names were converted in the field 196 

species_reference_canonical, including infraspecific assignations (e.g., variety, subspecies, 197 
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hybridization) and resolved via the default fuzzy matching in the WorldFlora package. 198 

Taxonomic authorities were not included as inputs for the matching, as they were 199 

inconsistently reported in the source data. For unmatched taxa and anything beyond a 200 

missing, added or switched letter, the matching was repeated without infraspecific 201 

assignations. In the case of multiple matches, we chose the default value provided by World 202 

Flora Online (called “smallest id”). Any remaining taxa were manually corrected. We also 203 

extracted information on plant families from the WFO database and reported it in the GWDD 204 

v.2. Overall, only 34 entries (22 genera) could not be matched to any family. 205 

Taxonomies are constantly updated to resolve ambiguities in species definitions, and 206 

sometimes, taxonomic resolution leads to a reclassification of species as subspecies and 207 

varieties (or vice versa). For simplicity, we recorded the entire scientific name provided by 208 

WorldFlora in the GWDD v.2’s species column, including infraspecific epithets. We also used 209 

this species definition for analyses in our study to provide the most conservative estimates of 210 

intraspecific variation. However, preliminary tests revealed that only a negligible portion of 211 

the analysed species had infraspecific epithets (~1% of all species with individual level wood 212 

density records, <1% among high-quality records), so this choice had no discernable effect on 213 

results. 214 

 215 

2.2. Intraspecific wood density variation 216 

Coverage of taxonomic and geographic variation  217 

Overall, we assembled more than 100,000 records from ca. 17,000 plant species in the GWDD 218 

v.2.  We assessed the representativeness of the species included in the GWDD v.2 with regard 219 

to the number of woody taxa worldwide estimated by assuming that 45% of the flowering 220 

plants are woody (FitzJohn et al., 2014), and the total number of flowering plants is ca. 221 
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400,000 (Enquist et al., 2019). We also used a verified list of known tree species 222 

(GlobalTreeSearch 1.7; Beech et al., 2017), resolved via World Flora Online for consistency, to 223 

assess which percentage of tree species in each country had a corresponding wood density 224 

estimate in the GWDD v.2. Intraspecific coverage was assessed through the number of 225 

records per species. 226 

 227 

Statistical analysis of intraspecific wood density variation  228 

To assess the extent and drivers of intraspecific wood density variation, we examined 229 

measurements from multiple sites per species, multiple individuals per site and multiple 230 

measurement locations per individual. For some species, the database contains multiple 231 

samples of individuals, but only from a single site, while for others, the database contains 232 

samples from multiple sites, but each with a single individual. To address this issue, we 233 

created subsets of the GWDD v.2 for each question, and alternative modeling strategies to 234 

ensure robustness of results (see Table S3 for an overview of models and subset sizes). 235 

Throughout, ‘intraspecific variation’ refers to cases where biological variation can be 236 

confidently separated from measurement errors. For example, tissue type 237 

(heartwood/sapwood) and environmental factors should affect biological variation, not 238 

measurement error. By contrast, when variation cannot be attributed to a specific factor, 239 

intraspecific variation plus measurement error are referred to as the ‘(residual) wood density 240 

distribution’. 241 

Across all datasets, we removed records not identified to species level (“genus” in the 242 

rank_taxonomic column of the database), samples consisting of bark (“bark” in the 243 

type_tissue column of the database), and records from experiments (identified by the words 244 

"fertilizer" or "treatment" in experiment_design) or from plantations (recorded as 245 
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“plantation” in type_forest). We also excluded root samples (“root” in the location_sample 246 

column) due to small sample sizes.  247 

Unless otherwise stated, all datasets were analyzed using mixed effects models with 248 

varying random slopes and intercept terms and qualitative explicative variables (e.g., 249 

“sapwood” vs. “heartwood”) coded as numerical variables (0, 1).  Models were fitted in the R 250 

environment (R Core Team, 2023), both with a Bayesian approach – using the brms package 251 

(Bürkner, 2018) and the STAN software (Carpenter et al., 2017) – and the maximum likelihood 252 

framework using the lme4 package (Bates et al., 2015, ‘bobyqa’ optimizer). The Bayesian 253 

approach is the default, due to flexibility in model construction, regularization through priors 254 

and full propagation of uncertainty. All models were assessed for convergence using standard 255 

diagnostics (R-hat <= 1.02) and posterior predictive checks (further details in S3, Table S3 and 256 

Fig. S1). Throughout, we also report lme4 estimates, as they are less expensive 257 

computationally and thus more readily used in practice, especially when relying on large 258 

databases.   259 

 260 

Quantification of intraspecific variation in wood density 261 

To assess the overall extent of intraspecific variation in wood density, we first partitioned 262 

total wood density variance and its components. We fitted a model with random effects for 263 

species nested within genera, genera nested within families, and a crossed random effect for 264 

methodological bias (the bibliographic reference or “source”, model M1, Table S3). We 265 

computed variance as the sum of variances across levels plus residual variance. To assess 266 

robustness, we also fitted a separate model without the “source” effect (Table S3, M2) and 267 

restricted the analysis to species with ≥ 3 individuals per species, ≥ 3 species per genus, ≥ 3 268 

genera per family (n = 49,991, nspecies = 2,735; Tables M3-4).  269 
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Second, to assess the contribution of different sources of intraspecific variation to its 270 

overall extent, we partitioned the intraspecific variance of wood density. We did so by fitting 271 

models with random effects for individuals nested within sites, and sites nested within 272 

species, each time with and without a crossed effect for measurement source (formulas in 273 

Table S3, M5-8). We restricted the analysis to subsets of species present in at least k sites, 274 

one site with at least k individuals, and one individual with at least k measurements (first 275 

setting k = 2 and then repeating for k = 3). Sites were defined as the collection of data within 276 

the same 1 km2 grid pixel. This approach mirrored the resolution of the climate input data 277 

and accounted for geolocation uncertainty (e.g., rounding of longitude and latitude values to 278 

2 decimals). Data subsets comprised n = 19,246 (nindividual = 14,373, nsite = 1,270, nspecies = 147) 279 

records for k=2, and n = 2,494 (nindividual = 1,052, nsite = 233, nspecies = 35) for k=3.  280 

The shape of intraspecific wood density distributions was assessed through the direct 281 

modeling of the residual variance parameter σ (Table S3, model M1, cf. Supplementary S3) 282 

and by comparing how well normal and lognormal distributions fitted each species’ wood 283 

density distribution (Shapiro-Wilkes test for untransformed vs. log-transformed wood 284 

densities with p < 0.05). To account for methodological differences and report biological 285 

variation, we always subtracted the random “source” effect before reporting wood density 286 

variation. 287 

 288 

Estimating variation in wood density within individuals 289 

Variation in wood density within individuals was assessed by subsetting to species with 290 

measurements for both sapwood and heartwood (n = 679, nspecies = 150), or for both 291 

trunkwood and branchwood (n = 48,494, nspecies = 2,018). The fitted models (Table S3, M9-10) 292 

had fixed effects for either sapwood (0 for heartwood, 1 for sapwood) or branchwood (also 293 
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0/1), random intercepts and slopes at species level, and a crossed random effect for 294 

measurement source. To assess whether wood density followed predictable gradients from 295 

the pith outwards to the bark and from the trunk upward to the branches, we calculated 296 

species means for each woody component and checked whether the slopes of major axis 297 

regressions (lmodel2 package; Legendre, 2018) of sapwood vs. heartwood and branchwood 298 

vs. trunkwood densities were < 1 (indicating a decrease) or > 1 (indicating an increase, Table 299 

S3, M11-12).  300 

To assess robustness and potential confounding effects, such as higher sapwood 301 

fraction in branches or variation in sample sizes among taxa, we repeated the analysis with a 302 

subset of branchwood and trunkwood densities taken entirely from sapwood (n = 1,193, 303 

nspecies = 523, M13), with a higher-quality dataset (species with >= 5 measurements both for 304 

branches and trunks, selecting 5 random measurements from each, nspecies = 189, M14), and 305 

a subset of records where both branch and trunk samples were taken from the same 306 

individuals (n = 3,527, nspecies = 145, M15, fitted at individual plant level, taking a random 307 

sample from both trunk and branch).  308 

 309 

Environmental predictors of intraspecific wood density variation 310 

To examine wood density variation across environmental gradients, we used species sampled 311 

from at least two sites, and paired them with the following bioclimatic layers that represent 312 

multiple axes of plant environmental gradients including extremes: annual mean temperature 313 

(°C), site water balance (kg m-2 yr-1, but with the sign reversed to indicate water deficit) and 314 

mean wind speed (m s-1) at 1 km resolution. We used the data from the CHELSA/BIOCLIM+ 315 

climatology 1981-2010 (Brun et al., 2022; Karger et al., 2017), but also repeated the analysis 316 

with products from the TerraClimate climatology 1981-2010, relying on climatic water deficit 317 
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(mm) instead of site water balance (Abatzoglou et al., 2018). While site water balance is a 318 

general measure of the availability of water to plants (Brun et al., 2022), climatic water deficit 319 

directly measures drought stress as the difference between potential and actual 320 

evapotranspiration. We also included the following soil layers: sand fraction (g kg-1), pH 321 

(unitless) and cation exchange capacity (in mmol(c) kg-1), based on the soilgrids product 322 

(Hengl et al., 2017). By default, we report only effects that remained qualitatively consistent 323 

across analyses methods (no shift in sign). For simplicity, effect sizes are always taken from 324 

the full dataset using CHELSA/BIOCLIM+ predictors. 325 

We matched predictors to wood density observations and assessed environmental 326 

effects both among and within species with the following model (cf. Table S3, M16-19): 327 

𝑤𝑑𝑖𝑗 =  𝛽0 + ∑ 𝛽𝑘
𝑛
𝑘=1 ⋅  𝑒𝑛𝑣𝑘𝑗  + ∑ 𝛾𝑘

𝑛
𝑘=1 ⋅  ∆𝑒𝑛𝑣𝑘𝑖𝑗 + 𝛾0𝑗 + ∑ 𝛾𝑘𝑗

𝑛
𝑘=1 ⋅  ∆𝑒𝑛𝑣𝑘𝑖𝑗  +  𝜀𝑖𝑗, 328 

with 𝜀𝑖𝑗  ~ 𝑁(0, 𝜎2). Here, n is the number of individuals, 𝑤𝑑𝑖𝑗 is the wood density of 329 

individual i belonging to species j, 𝑒𝑛𝑣𝑘𝑗 the environmental variable k averaged across all 330 

individuals from species j and ∆𝑒𝑛𝑣𝑘𝑖𝑗 the same environmental predictor k, but group-centred 331 

around the species mean value, and 𝜀𝑖𝑗 is the error. The model thus partitions environmental 332 

effects into interspecific effects, where 𝑒𝑛𝑣𝑘𝑗 is the typical environment of species j, and 333 

intraspecific effects, where ∆𝑒𝑛𝑣𝑘𝑖𝑗 represents how much the individual i deviates from the 334 

species mean environment. The model is equivalent to a standard linear-mixed effects model 335 

with random slopes and intercepts for species, but with added group-level predictors 𝑒𝑛𝑣𝑘𝑗 336 

that control for predictable variation among species (Table S3, models M16-17, Bafumi & 337 

Gelman, 2011). 𝛽0 is the overall intercept, 𝛽𝑘  and 𝛾𝑘  are fixed-effect parameters, and 𝛾0𝑗 and 338 

𝛾𝑘𝑗 are random intercept and slope parameters for species j, respectively. We chose this 339 

model as it allows for partitioning of intra- and interspecific effects and is more robust when 340 

predictors vary systematically with grouping factors (Bafumi & Gelman, 2011). 341 
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Since some species may cover only a narrow environmental range, we repeated the 342 

analysis with a subset of species for which at least one environmental factor covered a large 343 

range (Table S3, n = 30,128, nspecies = 692, M18-19), defined via TerraClimate and 5 km soilgrids 344 

as the 90th percentiles of all species’ ranges (ΔTemperature >= 8°C, ΔWater Deficit >= 450 mm, ΔWind 345 

speed >= 1.8 m s-1, ΔSand content >= 300 g kg-1, ΔpH >= 1.5 or ΔCat. exch. cap. >= 165 mmol(c) kg-1). To 346 

assess the consistency of predictors across biomes, we fitted separate models for tropical 347 

species (≥ 3 measurements in the tropics, n = 8,783, nspecies = 700, M20-21) and extratropical 348 

species (≥ 3 measurements outside the tropics, n = 26,437, nspecies = 247, M22-23).  349 

In all models, intra- and interspecific effects were examined on the same standardized 350 

scale. However, as environmental gradients among species were larger than among 351 

individuals of the same species, we also tested the rescaling of effect sizes to realized 352 

environmental ranges for the tropical and extratropical subsets, i.e. standardizing after 353 

separation of intra- and interspecific effects by their respective standard deviations. We fitted 354 

additional models to gymnosperms only (Table S3, n = 12,089, nspecies = 59, M24-25) to assess 355 

the stability of global effects when sampling is reduced to a small number of anatomically 356 

diverging taxa. 357 

 358 

The effect of intraspecific variation on wood density predictions 359 

Since wood density measurements are destructive, samples are usually only taken from a 360 

subset of plants, from nearby conspecifics or from global databases. The samples are then 361 

used to predict the wood density of the remaining individuals, for example, by using species 362 

mean values, or, if those are not available, the average of wood densities from the same genus 363 

or plot (Flores & Coomes, 2011; Réjou-Méchain et al., 2017). If many traits have been 364 

measured, more complex imputation methods are available (Schrodt et al., 2015). However, 365 
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most methods risk confounding intraspecific and interspecific variation and it is unclear what 366 

to do in edge cases, e.g., if 1-2 measurements from the same species are available, is it better 367 

to estimate an individual’s wood density by (i) directly using these values and averaging them,  368 

(ii) attributing the genus mean value, or (iii) combining both types of information, e.g., 369 

through taxonomic or phylogenetic hierarchical modelling? It is also (iv) unclear if local 370 

measurements should be weighted more strongly to account for environmental gradients in 371 

wood density.  372 

To answer these questions, we first assessed the influence of intraspecific variation 373 

on species-level wood density estimates. We computed average wood densities for all species 374 

with more than five measurements (nspecies=1,667) and assessed how accurately these 375 

reference values could be predicted if species were not well sampled. To do so, we cycled 376 

through all 1,667 species, in turn removed either all species-specific measurements or all 377 

species-specific measurements except one or two randomly chosen ones, and then estimated 378 

the species’ mean wood density from the remaining data. The estimation was carried out with 379 

three models: i) the default approach of estimating wood density means from a genus average 380 

(when no species-specific measurements exist) or a species average (when one or two 381 

species-specific measurements exist), ii) a hierarchical model of wood density that included a 382 

nested taxonomic structure (family / genus / species) and nested random effects for sites 383 

within studies, and iii) the same model as in ii), but with an optional fixed effect for trunkwood 384 

vs. branchwood (Table S3, models M26-27). Model performance was estimated via root mean 385 

square error (RMSE, g cm-3) and R2 (Table S16).  386 

Second, we tested how accurately we could predict the wood density of an individual 387 

plant depending on how well the species was sampled locally. To do so, we selected species 388 

with measurements from at least 3 sites, and where at least 4 of its individuals were measured 389 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 28, 2025. ; https://doi.org/10.1101/2025.08.25.671896doi: bioRxiv preprint 

https://doi.org/10.1101/2025.08.25.671896
http://creativecommons.org/licenses/by/4.0/


at each of the 3 sites (nspecies = 318). For each of the individuals, we then reduced the set of 390 

locally measured conspecifics to 0, 1, 2, or 3 (selecting random individuals where possible), 391 

and for each case tested how well the individual’s wood density could be inferred from the 392 

remaining data. We tested five models: i) a species average across the entire dataset, ii) a 393 

species average, but using only values measured as part of the same study, iii) a species 394 

average, but using only values measured locally, and iv) and v) the same hierarchical models 395 

as described above (Table S3, M26-27). Model performance was estimated via root mean 396 

square error (RMSE, g cm-3) and R2 (Table S17).   397 
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3. Results 398 

The Global Wood Density Database 399 

To create the GWDD v.2, we assembled 109,626 wood density records from 166 countries, 400 

617 primary sources and 17,262 taxa across all woody biomes and biogeographic realms. Of 401 

these taxa, we resolved 16,829 to species level. We also included information on aggregation 402 

levels, conversion factors and precise geographic location, as well as an additional 15,093 bark 403 

density records from 57 studies. The fully assembled GWDD v.2 contained 6.7x as many wood 404 

density records and 2.3x as many species as the GWDD v.1 (16,468 records across 7,453 405 

accepted species). We estimated that the GWDD v.2 covered 10% of all woody species, 24% 406 

of all known tree species and 49% of gymnosperm species. Of the families with the most 407 

known tree species, Sapotaceae and Fabaceae were best represented in the database (38% 408 

and 34% coverage). In contrast, wood density estimates were rare in Arecaceae (6%, not true 409 

wood), Araliaceae (10%) and Melastomataceae (12%).  410 

Out of all the GWDD v.2’s records, 83,502 (76%) were provided at individual plant 411 

level, and 58,675 entries (54%) were precisely geolocated. For 4,508 species, at least five 412 

wood density measurements were available, and combinations of branch-trunk wood 413 

measurements were available for 2,018 species (146 families). For 78 species, mostly in 414 

Pinaceae and Fagaceae, there were more than 100 wood density measurements. The majority 415 

(65%) of the wood density values were directly measured as basic wood density (71,746). The 416 

remaining values were converted from airdry (~29%), and ovendry wood densities (~6%). 417 

Geographic coverage varied widely, from a near-complete coverage of recorded tree species 418 

in high latitudes to < 50% in tropical regions (95% range: 27.3%; 98.5%, Fig. 1). An exception 419 

was West Africa where coverage of known tree species was ≥70%, albeit without precise 420 

geolocation for most records (cf. limited number of red dots in Fig. 1). 421 
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 422 

Fig. 1: Geographic coverage of the Global Wood Density Database (GWDD) v.2. This figure separately maps 1) 423 

the percentage of each country’s species that could be matched to species in the GWDD v.2 (background colour 424 

gradient), and 2) all locations with explicitly geolocated wood density measurements in the GWDD v.2 (red dots). 425 

For the former, measurements did not have to be explicitly geolocated, meaning some countries had high 426 

species coverage, despite a lack of country-specific wood density measurements (e.g., West African countries). 427 

Conversely, some large, predominantly temperate countries (e.g., the U.S.) had many explicitly geolocated 428 

records, but also covered species-rich subtropical and tropical zones, which lowered their overall species 429 

coverage. Country boundaries follow Natural Earth (https://www.naturalearthdata.com/, last accessed 14 Dec 430 

2023). The inset in the lower left corner shows the distributions of wood density at various levels of aggregation: 431 

distributions of family, genus and species means, as well as the full biological variation in wood density. To 432 

attenuate sampling biases, the distributions were based on five random draws from each species (with 433 

replacement). Biological variation was estimated by subtracting inferred methodological biases (“source” effect 434 

in model M1, Table S3) from the raw values. 435 

  436 

The extent and shape of intraspecific variation in wood density 437 

Globally, wood density displayed a normal distribution with a mean of 0.56 g cm-3 (sd = 0.178 438 

g cm-3, Fig. 1 inset). The majority of this variation (77%, sd = 0.156 g cm-3) was accounted for 439 

by variation at the taxonomic family (30%), genus (30%) or species levels (17%), with the rest 440 

attributed to study methodology (8%) or intraspecific variation and unknown errors (15%; 441 

0.068 g cm-3, Fig. 1, inset, Fig. S2-3, Table S4). The intraspecific contribution was robust to 442 

model details (Table S4, Table S5). For well-sampled taxa, we further partitioned intraspecific 443 

variance, and found that wood density variation among sites exceeded variation among 444 
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individuals within sites (sd = 0.025-0.042 g cm-3 vs. sd = 0.017-0.028 g cm-3, Table S6), but was 445 

small overall (ca. 20-30% of total intraspecific variation), and smaller than residual variation 446 

(variation within individuals + unknown measurement error, sd = 0.040-0.045 g cm-3, Table 447 

S5-6).  448 

Intraspecific variation differed in extent and shape between species, with a few 449 

species varying much more than the others (Fig. S3, e.g., sd = 0.094 g cm-3 for Quercus ilex, 450 

compared to sd = 0.038 g cm-3 for Quercus alba). The distribution of wood density values of 451 

conspecifics was generally heavy-tailed, but there was no clear signal of skew, with the 452 

lognormal distribution more often rejected than the normal distribution (13.7% vs. 12.6%, 453 

Shapiro-Wilkes p < 0.05 for log-transformed and untransformed values).  454 

 455 

Fig. 2: Variation in wood density across plant tissue types. Shown are plots of species means for a) heartwood 456 

vs. sapwood densities, b) trunkwood vs. branchwood densities and c) trunkwood vs. branchwood densities when 457 

measured on sapwood. Every dot represents a species, blue lines are Major Axis regression lines, dashed lines 458 

their 95% CI. Solid black lines are the 1:1 lines.  459 

 460 

Wood density variation within individuals 461 

Across plant tissue types, there were strong correlations between heartwood and sapwood 462 

densities (Pearson’s r = 0.78, Fig. 2a) and between trunkwood and branchwood densities (r = 463 
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0.67, Fig. 2b, Table S9). However, slopes were < 1 in both cases. There was a 50% reduction 464 

in the variance of sapwood compared to heartwood (0.144 vs. 0.197 g cm-3) and a ~30% 465 

reduction in the variance of branchwood compared to trunkwood (0.120 g cm-3 vs. 0.145 g 466 

cm-3). When comparing only sapwood samples from trunks and branches, this effect was 467 

weaker (0.112 vs. 0.124 g cm-3, less than a 20% reduction in variance) and the correlation was 468 

stronger (r = 0.76, n = 523, Fig. 2c; for more analyses see Table S9, Figs. S5-S6). There was a 469 

weak average decrease from heartwood to sapwood of -0.001 g cm-3 and a stronger, but still 470 

small decrease of -0.023 g cm-3 from trunkwood to branchwood (Table S8). However, both 471 

effects varied strongly among species (slope sd = 0.060 g cm-3 for heartwood vs. sapwood and 472 

sd = 0.075 g cm-3 for trunkwood vs. sapwood). 473 

 474 

Wood density variation among individuals  475 

Among individuals within species, environmental factors had small, but consistent, effects on 476 

wood density variation (Fig. 3, Tables S10-13, Fig. S7-10). Wood density increased with 477 

temperature by 0.012 g cm-3 (standardized effect size) and with water deficit by 0.010 g cm-478 

3; it decreased weakly with wind speed and soil pH (by -0.003 for both, Tables S10-11). These 479 

effects were strongly correlated with interspecific effects (r = 0.83, Fig. S12), but were smaller 480 

by 70-80% (Fig. 3, Figs. S7-10, Tables S10-13) and varied from one species to another. For 481 

example, a typical intraspecific increase in wood density by 0.010 g cm-3 amounted to ~25% 482 

of the respective interspecific effect (0.038 g cm-3), and species varied widely around this 483 

mean (sd = 0.038 g cm-3, Table S10). Patterns were comparable when modelling tropical and 484 

extratropical species separately, but in the tropics, increases with water deficit (0.012 g cm-3 485 

within and 0.059 g cm-3 among species) and decreases with pH (-0.014 within and -0.033 g 486 

cm-3 among species) were stronger. In a separate analysis for gymnosperms, there was a clear 487 
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intraspecific decrease of -0.010 g cm-3 with soil pH and a strong intraspecific increase with 488 

water deficit (0.034 g cm-3, Table S15, Fig. S11). Since some species covered a narrow 489 

environmental gradient, effects were weaker when rescaling effect sizes to realized 490 

environmental ranges (Table S14, Figs. S13-14). For example, within the actual environmental 491 

limits of species observed in our data, tropical wood density increased by 0.012 g cm-3 with 492 

temperature instead of the 0.022 g cm-3 predicted by a more generic model. 493 

 494 

Fig. 3: Environmental effects on wood density. Shown are the global effects of climatic and edaphic predictors 495 

on wood density, separated into intraspecific (a) and interspecific effects (b). Estimates of effect sizes were 496 

derived from a Bayesian hierarchical model, with all predictors scaled by one standard deviation (model M9, cf. 497 

Table S3 and Table S10). Climatic variables were from CHELSA/BIOCIM+ (Brun et al., 2022; Karger et al., 2017), 498 

edaphic variables from soilgrids (Hengl et al., 2017). Black dots indicate the median effect size and black intervals 499 

indicate quantile ranges (66% and 95%, partially covered by the black dots). The effects of cation exchange 500 

capacity were highly dependent on grid cell resolution and models, meaning effect sizes should be interpreted 501 

with caution (Fig. S7).  502 

 503 

The effect of intraspecific variation on wood density estimation 504 
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Intraspecific variation strongly reduced the accuracy of wood density estimates in 505 

undersampled species. A single wood density measurement was a poor approximation of the 506 

species mean (RMSE = 0.084 g cm-3); it was in fact comparable to a genus mean that did not 507 

involve any sampling of the target species (RMSE = 0.083 g cm-3, Table S16). However, the 508 

accuracy of species-level wood density estimates improved quickly with better sampling. 509 

From the average of two measurements, species-level wood density could already be 510 

predicted with RMSE = 0.056 g cm-3 (Table S16). Accuracy improved further when applying 511 

hierarchical models that combined individual measurements with taxonomic information 512 

from the remainder of the GWDD v.2 (RMSE = 0.038 g cm-3 for two measurements, Tables 513 

S16-17).  514 

The wood density of individual plants was much harder to predict from conspecifics, 515 

with an RMSE of 0.107 g cm-3 and R2 = 0.59 when estimated from a single local wood density 516 

measurement (Fig. 4a, Tables S16-17). Errors were lower when pooling information with the 517 

GWDD v.2 via hierarchical modelling, but the improvements were moderate (RMSE = 0.086 g 518 

cm-3 or ca. 20% of the raw estimate, and R2 = 0.71, Fig. 4b). Errors were similar when three 519 

measures from local conspecifics were included, both as simple average (RMSE = 0.082 g cm-520 

3) or based on a hierarchical model (RMSE = 0.083 g cm-3, Table S17). 521 
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522 

Fig. 4: Prediction of an individual plant’s wood density from a local conspecific. Shown are two approaches to 523 

estimate an individual plant’s wood density when a measurement from a local conspecific is available: a) using 524 

the conspecific’s raw wood density measurement as an estimate, and b) using species or genus means adjusted 525 

by the local conspecific’s value via hierarchical models (model M27, Table S3).  526 
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4. Discussion 527 

Wood density is a key trait in plant ecology, acting as an indicator of species’ competitive 528 

abilities (Kunstler et al., 2016), demographic rates (Adler et al., 2014), and ecological 529 

strategies (Chave et al., 2009; King et al., 2006; Kraft et al., 2010). The importance of species-530 

level differences in wood density is well-known (Phillips et al., 2019). However, intraspecific 531 

variation is commonly considered less relevant due to the large amounts of wood density 532 

variation explained by taxonomic and phylogenetic relationships (Chave et al., 2009), the 533 

strong genetic control over wood density (Cornelius, 1994; Zobel & Jett, 1995) and a limited 534 

contribution to community-level variation in comparison with other plant traits (Siefert et al., 535 

2015). Given that intraspecific variation in traits plays a crucial role for ecological processes 536 

(Bolnick et al., 2011; Des Roches et al., 2018) and may influence biomass estimates (Momo et 537 

al., 2020), we here re-examined this hypothesis at a global scale via the newly assembled 538 

Global Wood Density Database v.2, which, compared to the previous version (Zanne et al., 539 

2009), included more than 6x as many records, more than doubled the number of species, 540 

and added key information on sources of intraspecific variation.  541 

 542 

Intraspecific variation in wood density matters 543 

In the GWDD v.2, intraspecific variation in wood density (sd = 0.068 g cm-3) was substantial 544 

and structured according to both internal factors (within-plant structure) and external factors 545 

(environment). Intraspecific variation accounted for up to 15% of global wood density 546 

variation and followed predictable patterns with environmental factors. Wood density 547 

increased with water deficit and more weakly decreased with soil pH. These results were 548 

consistent across models and datasets (Table S10-13) and confirmed expectations that plants 549 

with high wood densities should be favoured in extreme and nutrient-poor environments 550 
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(Anderegg et al., 2021; Gourlet-Fleury et al., 2011; Ibanez et al., 2017; Muller-Landau, 2004; 551 

Yang et al., 2023). There was also a general trend of increases in wood density with 552 

temperature, both in and out of the tropics, which may also reflect higher risks of drought-553 

induced embolisms in hotter environments, but it was not as clear as trends with water 554 

availability (Tables S10-15). Crucially, environmental effects at intraspecific level were 555 

strongly correlated with interspecific effects (r = 0.83) and were also consistent with a 556 

companion study that found that community-means of wood density increased with 557 

temperature and aridity (Fischer et al., submitted). This consistency of environmental effects 558 

across scales was surprising, since previous studies found that variation in plant traits is often 559 

shaped by scale-dependent physiological and ecological mechanisms (Anderegg et al., 2018; 560 

Fajardo et al., 2024; Wang et al., 2022; Zhou et al., 2022). Wood density, with its genetic 561 

limitations on variation, might thus be an exception, with similar physiological constraints 562 

operating across different levels of ecological organization.  563 

 We also found that previously hypothesized patterns of variation in wood density 564 

within individuals (MacFarlane, 2020; Woodcock & Shier, 2002) generalized to global scales. 565 

Across species and studies, wood density varied less in sapwood than in heartwood and less 566 

in branchwood than in trunkwood. Species with low-density heartwood had denser sapwood 567 

and species with low-density trunkwood had denser branchwood, and vice versa in both cases 568 

(Fig. 2a and b). An explanation for the heartwood-sapwood trends may lie in distinct 569 

ecological strategies with changes in ontogeny (Hietz et al., 2013; Wiemann & Williamson, 570 

1988; Woodcock & Shier, 2002), i.e., that some species tend to grow fast early in their life, 571 

investing little in dense wood, but slow down in later life. The opposite strategy – investing 572 

first in dense wood and then accelerating diameter growth later in life – has also been 573 

suggested, but appears less common (Osazuwa-Peters et al., 2014). Trunk-branchwood 574 
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patterns have been explained through stronger functional constraints on branches than on 575 

trunks (MacFarlane, 2020; Momo et al., 2020), but it has also been argued that they may be 576 

explained by sapwood fractions (Gartner, 1995), since corewood formation at the tip of the 577 

stem occurs at the same time as the formation of outer wood at its base (cf. summary in 578 

Wiemann & Williamson, 2013). Indeed, when we compared only sapwood samples, 579 

differences between branch and trunkwood largely disappeared (Fig. 2c). These results need 580 

to be qualified, however. While we  found clear global patterns, our findings relied on coarse, 581 

binary distinctions between woody tissue types and thus glossed over methodological 582 

differences between studies, as well as finer biological details. Changes in wood properties 583 

from the pith to bark or from base of trunk to branches often follow non-linear patterns and 584 

vary strongly between individual plants (Osazuwa-Peters et al., 2014; Schuldt et al., 2013; 585 

Terrasse et al., 2021), both of which remain to be studied in future research.  586 

 Our study also demonstrated that intraspecific variation in wood density has 587 

implications for applications such as carbon stock assessments or functional ecology. It is 588 

common practice to use individual wood density measurements as estimates for species 589 

means (Réjou-Méchain et al., 2017), but we found that individuals were generally so variable 590 

that a species mean was less accurately estimated from a single species measurement than 591 

from a genus mean. When applying hierarchical models, we found strong improvements in 592 

predictive accuracy for species means (from RMSEs g cm-3 of 0.084 down to 0.038 g cm-3 with 593 

two samples). However, increased sampling and hierarchical models did not help with 594 

predicting an individual plant’s wood density. Even from three samples of local conspecifics, 595 

RMSEs did not decrease below 0.082 g cm-3, indicating that there was substantial biological 596 

variation among and within individuals that could not be explained by site-specific 597 

environmental factors or phylogenetic relatedness. We note, however, that our study could 598 
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not examine the local growth conditions and competitive neighbourhood of individuals, 599 

which likely play an important role in explaining intraspecific variation in wood density 600 

(Kunstler et al., 2016).   601 

 602 

But intraspecific variation in wood density is also limited 603 

Despite the importance of intraspecific variation in wood density, we still found that its extent 604 

was limited. First, it accounted for less of the total variance than taxonomic variation at 605 

species (17%), genus (30%) or family (30%) levels. Second, average environmental effects and 606 

gradients within individuals were generally small (usually ~0.01 g cm-3 or less, exceptionally 607 

~0.02 g cm-3). They amounted to only 20-30% of species-level effects and were outweighed 608 

both by methodological uncertainties, as may arise from differences in drying temperatures 609 

or wood coring (estimated at sd = 0.049 g cm-3 when counting only between-study 610 

differences, model M1, Table S4), and large among-species variation in the direction and 611 

magnitude of intraspecific effects. For example, across species, we found an average decrease 612 

of -0.023 g cm-3 from trunk to branchwood, but species varied in this relationship with sd = 613 

0.075 (model M10, Table S8). This result means that branchwood density was still higher than 614 

trunkwood density by more than 0.015 g cm-3 in ca. 30% of species. Similarly, despite an 615 

intraspecific increase of wood density with water deficit of 0.010 g cm-3, species varied in this 616 

effect with sd = 0.038 g cm-3 (model M16, Table S10), meaning that in ca. 30% of species wood 617 

density decreased with water deficit by a similarly-sized 0.010 g cm-3. 618 

 It is possible that these estimates of variation in effect sizes were slightly too large, 619 

since global collections such as the GWDD v.2 accumulate variation from many sources. Also, 620 

they do not systematically sample across species’ entire environmental ranges, meaning 621 

errors across small environmental gradients and local growth conditions (light, rocks, 622 
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waterlogging) may introduce uncertainty. Some studies, for example, found that intraspecific 623 

variation was better predicted when large aridity or temperature gradients were 624 

systematically sampled (Anderegg et al., 2021). However, other studies with systematic 625 

sampling designs did not find consistent effects of the environment on intraspecific variation 626 

(Richardson et al., 2013; Rosas et al., 2019), and a replication of our analysis with a higher-627 

quality subset of the GWDD v.2 did not change the results: for example, we still found the 628 

same small intraspecific increase with water deficit (0.008 g cm-3), the same large variation 629 

around this mean effect (sd = 0.039 g cm-3), and the same much larger effect of 0.045 g cm-3 630 

among species (model M18, Table S10).  631 

Overall, this large variability in effect size and direction indicated that intraspecific 632 

wood density variation, even when following broad patterns, was difficult to predict. In 633 

practice, the inclusion of the location of tissues (branch vs. trunk) into hierarchical models of 634 

wood density variation improved predictions at the species level from RMSE = 0.043 to 0.038 635 

g cm-3 (assuming two wood density measurements, Table S16), but impacts on individual 636 

plant wood density estimates were minimal, with RMSE = 0.085 vs. 0.084 g cm-3 (also 637 

assuming two wood density measurements, Table S17). These findings are consistent with 638 

several previous studies which found clear patterns for community- and species-level wood 639 

densities (Chave et al., 2009; Kraft et al., 2010; Swenson & Enquist, 2007) where errors were 640 

smaller than total variation among taxa, but could not replicate these results at the 641 

intraspecific level, with patterns seemingly unpredictable (Fajardo, 2018; Richardson et al., 642 

2013; Rosas et al., 2019; Umaña & Swenson, 2019).   643 

 644 

When to account for intraspecific variation in wood density: A tale of two scales 645 
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Overall, our study showed that the decision of accounting for intraspecific variation in wood 646 

density depends on the scale of the research question. Measuring each individual’s wood 647 

density and how it changes across its organs is paramount when studying plastic growth 648 

responses in individual plants. Intraspecific variation of up to 0.068 g cm-3 meant that two 649 

measurements of individuals from the same species could easily be separated by as much as 650 

0.19 g cm-3 (95% interval of the difference between two draws from a normal distribution 651 

with sd = 0.068 g cm-3). This variability should be large enough to overwhelm most species 652 

differences at a single site and led to large errors when predicting an individual’s wood 653 

density, with R2 as low as 0.59 and RMSEs as high as 0.108 g cm-3 in this study (Fig. 4). 654 

Intraspecific variation in wood density may thus dominate species-level differences within 655 

communities or even across communities if these are dominated by only a few species that 656 

are close in average wood density values (cf. patterns in Anderegg et al., 2021). Another case 657 

where intraspecific variation should be accounted for is the determination of individual tree 658 

biomass from terrestrial laser scanning (TLS). TLS-derived 3D volumetric models can give 659 

precise volume estimates (Calders et al., 2015), which then must be combined with wood 660 

density to transfer volume to biomass. However, TLS estimates can be costly to construct, and 661 

their volume estimate precision only matters if wood density variation among individuals and 662 

along the hydraulic pathway are accounted for (Demol et al., 2021; Momo et al., 2020). Since 663 

we found errors of at least 0.08 g cm-3 when predicting wood density at the individual tree 664 

level (or between 10-20% of wood density, assuming most plants have densities between 0.40 665 

and 0.80 g cm-3), studies likely cannot infer this variation, but need to systematically sample 666 

multiple individuals with at least two samples per measurement location.  667 

By contrast, if the aim is to assess average community structure and vegetation 668 

dynamics at large scales or across steep environmental gradients, it makes sense to prioritize 669 
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taxonomic coverage (Phillips et al., 2019) over the exhaustive sampling of individuals from a 670 

single species. First, as we showed here, variation at species or higher taxonomic levles 671 

accounted for most variation in wood density (77%). Second, environmental effects at the 672 

intraspecific level aligned with interspecific effects (r = 0.83). Third, variation among and 673 

within individuals within sites is expected to average out at the community level. Therefore, 674 

as long as a wide range of communities is sampled, the omission of intraspecific effects should 675 

not introduce systematic bias. In some cases, such as wood density predictions via machine 676 

learning models (Yang et al., 2024), it may even make sense to ignore intraspecific information 677 

on purpose, as the risk of overfitting or mistaking small methodological differences for 678 

biological variation outweighs the benefits of small corrections of ~0.01 g cm-3 or less. 679 

Similarly, intraspecific variation in wood density should play a minor role when applying pre-680 

calibrated allometric models to estimate tree biomass, as its variance is dwarfed by other 681 

sources of uncertainty, such as allometric models and estimates of plant size and shape 682 

(Chave et al., 2014; Kindermann et al., 2022; Molto et al., 2013; Réjou-Méchain et al., 2017).  683 

 684 

Global traits databases as backbones for hierarchical models 685 

A key takeaway of our study is that, no matter the level of analysis, wood density 686 

measurements should not be treated as monolithic true values. Rather, they are noisy trait 687 

estimates that can be refined by including prior information through shared evolutionary 688 

history or measurement locations (Funk et al., 2017). Here, we applied simple hierarchical 689 

models based on taxonomic relationships and found that they vastly outperformed simple 690 

averaging procedures, particularly for undersampled species. A single wood density 691 

measurement was as poor an approximation of the species mean as a genus mean that did 692 

not involve any sampling of the target species (Tables S16), but errors decreased substantially 693 
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when combining both in a hierarchical model (Fig. 4, Tables S16-17). Approaches could be 694 

further refined by explicitly accounting for phylogenetic relationships, but this approach 695 

comes with its own challenges (Revell, 2010), and taxonomic hierarchies may provide a good 696 

approximation (cf. https://statmodeling.stat.columbia.edu/2016/02/14/hierarchical-models-697 

for-phylogeny-heres-what-everyones-talking-about/, last accessed on 9 September, 2024).  698 

 Overall, our findings suggest that there is great value in open-access trait database 699 

such as the GWDD v.2, as they synthesize knowledge across a range of disciplines and help 700 

correct noisy local estimates. They also provide insights on ecological strategies, variation 701 

across biogeographic realms, and, with careful curation and documentation (Augustine et al., 702 

2024), allow us to explore intraspecific variation. At the time of writing, version 1 of the GWDD 703 

has been downloaded almost 20,000 times. Many of the applications of this database have 704 

been in assessing forest carbon storage, in connection with REDD+ projects or carbon credit 705 

accounting programs.  As this sector is coming under closer scrutiny, reducing uncertainty in 706 

carbon estimates is a timely ambition, and the GWDD v.2 will be an important contribution. 707 

The findings in this study will also be helpful for developing theories about the evolution of 708 

carbon investments in plants (Castorena et al., 2022), improving the parameterization of 709 

global dynamic vegetation models, and providing guidance on how to account for intraspecific 710 

variation in ecological studies. In the future, we hope that the openly available and thoroughly 711 

documented GWDD v.2 will encourage the documentation and sharing of more wood density 712 

datasets and the construction of similar databases for other traits.  713 
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