
A global map of wood density 
 
Fabian Jörg Fischer¹ ² ³, Jérôme Chave², Amy Zanne⁴, Tommaso Jucker¹, Alex Fajardo⁵ ⁶ 

⁷, Adeline Fayolle⁸ ⁹, Renato Augusto Ferreira de Lima¹⁰, Ghislain Vieilledent¹¹ ¹² ¹³, 

Hans Beeckman¹⁴, Wannes Hubau¹⁴ ¹⁵, Tom De Mil¹⁶ ¹⁴, Daniel Wallenus¹⁴, Ana María 

Aldana¹⁷, Esteban Alvarez-Dávila¹⁸, Luciana F. Alves¹⁹, Deborah M. G. Apgaua²⁰, Fátima 

Arcanjo²¹ ²², Jean-François Bastin²³, Andrii Bilous²⁴, Philippe Birnbaum²⁵, Volodymyr 

Blyshchyk²⁴, Joli Borah²⁶, Vanessa Boukili²⁷ ²⁸, J. Julio Camarero²⁹, Luisa Casas³⁰, 

Roberto Cazzolla Gatti³¹, Jeffrey Q. Chambers³², Ezequiel Chimbioputo Fabiano³³, 

Brendan Choat³⁴, Edgar Cifuentes³⁵ ¹⁷, Georgina Conti³⁶, David Coomes³⁷, Will 

Cornwell³⁸, Javid Ahmad Dar³⁹ ⁴⁰, Ashesh Kumar Das⁴¹, Magnus Dobler⁴², Dao 

Dougabka⁴³, David P. Edwards⁴⁴ ⁴⁵, Urs Eggli⁴⁶, Robert Evans⁴⁷, Daniel Falster⁴⁸, Philip 

Fearnside⁴⁹, Olivier Flores⁵⁰, Nikolaos Fyllas⁵¹, Jean Gérard⁵² ⁵³, Rosa C. Goodman⁵⁴, 

Daniel Guibal⁵² ⁵³, L. Francisco Henao-Diaz¹⁷ ⁵⁵, Vincent Hervé⁵⁶, Peter Hietz⁵⁷, Jürgen 

Homeier⁵⁸ ⁵⁹, Thomas Ibanez⁶⁰, Jugo Ilic⁶¹ ⁶², Steven Jansen⁶³, Rinku Moni Kalita⁶⁴ ⁴¹, 

Tanaka Kenzo⁶⁵, Liana Kindermann⁴², Subashree Kothandaraman⁶⁶ ⁶⁷, Martyna 

Kotowska⁶⁸ ⁶⁹, Yasuhiro Kubota⁷⁰ ⁷¹, Patrick Langbour⁵² ⁵³, James Lawson⁷², André Luiz 

Alves de Lima⁷³, Roman Mathias Link⁷⁴, Anja Linstädter⁴², Rosana López⁷⁵, Cate 

Macinnis-Ng⁷⁶, Luiz Fernando S. Magnago⁷⁷, Adam R. Martin⁷⁸, Ashley M. Matheny⁷⁹, 

James K. McCarthy⁸⁰, Regis B. Miller⁸¹, Arun Jyoti Nath⁸², Bruce Walker Nelson⁸³, Marco 

Njana⁸⁴, Euler Melo Nogueira⁸⁵ ⁸⁶, Alexandre Oliveira⁸⁷, Rafael Oliveira⁸⁸, Mark Olson⁸⁹, 

Yusuke Onoda⁹⁰, Keryn Paul⁹¹, Daniel Piotto⁹², Phil Radtke⁹³, Onja Razafindratsima⁹⁴, 

Tahiana Ramananantoandro⁹⁵, Jennifer Read⁹⁶, Sarah Richardson⁸⁰, Enrique G. de la 

Riva⁹⁷, Oris Rodríguez-Reyes⁹⁸ ⁹⁹, Samir G. Rolim⁹², Victor Rolo¹⁰⁰, Julieta A. Rosell¹⁰¹, 

Sassan Saatchi¹⁰² ¹⁰³ ¹⁰⁴, Roberto Salguero-Gómez¹⁰⁵ ¹⁰⁶, Nadia S. Santini¹⁰⁷ ¹⁰⁸, 

Bernhard Schuldt⁷⁴ ¹⁰⁹, Luitgard Schwendenmann¹¹⁰, Arne Sellin¹¹¹, Timothy Staples¹¹², 

Pablo R Stevenson¹⁷, Somaiah Sundarapandian¹¹³, Masha T van der Sande¹¹⁴, Hans ter 

Steege¹¹⁵ ¹¹⁶, Shengli Tao¹¹⁷ ¹¹⁸, Bernard Thibaut¹¹⁹, David Yue Phin Tng²⁰, José Marcelo 

Domingues Torezan²², Boris Villanueva¹²⁰ ¹²¹, Aaron Weiskittel¹²², Jessie Wells¹²³, S. 

Joseph Wright¹²⁴, Kasia Zieminska¹²⁵ and Alexander Zizka¹²⁶   

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 28, 2025. ; https://doi.org/10.1101/2025.08.25.671920doi: bioRxiv preprint 

https://doi.org/10.1101/2025.08.25.671920
http://creativecommons.org/licenses/by/4.0/


Corresponding author: f.fischer@bristol.ac.uk 
 
Affiliations 

¹School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ United Kingdom 

²Centre de Recherche Biodiversité Environnement, UMR 5300 (CNRS/IRD/UPS/INPT), 
31062 Toulouse Cedex 9, France 

³Technical University of Munich, School of Life Sciences, Ecosystem Dynamics and 
Forest Management in Mountain Landscapes, Hans-Carl-von-Carlowitz-Platz 2, 85354 
Freising, Germany 

⁴Cary Institute of Ecosystem Studies, Millbrook, NY 12545, USA 

⁵Direccion de Investigación, Vicerrectoría Academica, Universidad de Talca, Campus 
Lircay, Talca, 3460000 Chile 

⁶Instituto de Ecología y Biodiversidad (IEB), Las Palmeras 3425, Ñuñoa, 8310000 Chile 

⁷Millenium Nucleus of Patagonian Limit-of-Life (LiLi), Valdivia 5090000, Chile 

⁸Université de Liège, Gembloux Agro-Bio Tech, Gembloux, Belgium 

⁹CIRAD, UPR Forêts et Sociétés, F-34398 Montpellier, France 

¹⁰Departamento de Ciências Biológicas, ESALQ, Universidade de São Paulo, Avenida 
Pádua Dias, 11, 13418-900 Piracicaba, Brazil 

¹¹AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France 

¹²CIRAD, UMR AMAP, F-98848 Nouméa, Nouvelle-Calédonie, France 

¹³IAC, Nouméa, Nouvelle-Calédonie 

¹⁴Service of Wood Biology, Royal Museum for Central Africa, Tervuren, Belgium 

¹⁵Department of Forest and Water Management, Laboratory of Wood Technology, Ghent 
University, Ghent, Belgium 

¹⁶Forest Is Life, TERRA Teaching and Research Centre, Gembloux Agro Bio‐Tech, 
University of Liège, Gembloux 

¹⁷Laboratorio de Ecología de Bosques Tropicales y Primatología, Universidad de Los 
Andes, 111711, Bogotá D.C, Colombia 

¹⁸Fundacion Con Vida, Medellín, Colombia 

¹⁹Center for Tropical Research, Institute of the Environment and Sustainability, UCLA, 
Los Angeles, CA, USA 

²⁰Centre for Rainforest Studies, The School for Field Studies, Yungaburra Qld 4872, 
Australia 

²¹Universidade Federal de Uberlândia, Uberlândia, BR 

²²Biodiversity and Ecosystem Restoration Lab, Londrina State University, Campus 
Universitario, CCB, BAV, 86.051-990 Londrina, PR, Brazil 

²³TERRA Teaching and Research Centre, Gembloux Agro Bio-Tech, Université de Liège, 
Liège, Belgium 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 28, 2025. ; https://doi.org/10.1101/2025.08.25.671920doi: bioRxiv preprint 

mailto:f.fischer@bristol.ac.uk
https://doi.org/10.1101/2025.08.25.671920
http://creativecommons.org/licenses/by/4.0/


²⁴National University of Life and Environmental Sciences of Ukraine (NUBiP), 03041 
Kyiv, Ukraine 

²⁵CIRAD, UMR AMAP, F‐34398 Montpellier, France. AMAP, Univ Montpellier, CIRAD, 
CNRS, INRAE, IRD, Montpellier, France 

²⁶Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK 

²⁷Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 
USA 

²⁸Office of Strategic Planning and Community Development, Somerville, Massachusetts, 
USA 

²⁹Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005 50192, Zaragoza, 
Spain 

³⁰Laboratorio de Ecología de Bosques Tropicales y Primatología, Fundación Natura 
Colombia, Universidad de Los Andes, 111711, Bogotá D.C, Colombia. 

³¹Department of Biological, Geological and Environmental Sciences, University of 
Bologna, Bologna, Italy 

³²University of California, Berkeley, Departement of Geography, Berkeley, CA, United 
States 

³³Department of Wildlife Management and Tourism Studies, University of Namibia 
Katima-Mulilo Campus, Ngweze, Katima-Mulilo 1096, Namibia 

³⁴Hawkesbury Institute for the Environment, Western Sydney University, Richmond, 
New South Wales, Australia 

³⁵Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK 

³⁶Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET - Universidad 
Nacional de Córdoba, Edificio de Investigaciones Científicas y Técnicas, Av. Vélez 
Sársfield 1611, (CP5000), Córdoba, Argentina 

³⁷Conservation Research Institute and Department of Plant Sciences, University of 
Cambridge, Cambridge, CB2 3EA, UK 

³⁸School of Biological, Earth and Environmental Sciences, University of New South 
Wales, Sydney, Australia 

³⁹Terrestrial Ecology and Modelling (TEaM) Lab, Department of Environmental Science 
and Engineering, SRM University-AP, Amaravati-522240, Andhra Pradesh, India 

⁴⁰Centre for Geospatial Technology, SRM University-AP, Amaravati-522240, Andhra 
Pradesh, India 

⁴¹Department of Ecology and Environmental Science, Assam University, Silchar 788 011, 
India 

⁴²Biodiversity Research and Systematic Botany, Institute of Biochemistry and Biology, 
Faculty of Science, University of Potsdam, 14469 Potsdam, Germany. 

⁴³École Nationale Supérieure des Travaux Publics du Tchad, Département des Sciences 
Fondamentales, BP 60, N’Djamena, Tchad 

⁴⁴Department of Plant Sciences and Centre for Global Wood Security, University of 
Cambridge, Cambridge, CB2 3EA, UK 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 28, 2025. ; https://doi.org/10.1101/2025.08.25.671920doi: bioRxiv preprint 

https://doi.org/10.1101/2025.08.25.671920
http://creativecommons.org/licenses/by/4.0/


⁴⁵Conservation Research Institute, University of Cambridge, Cambridge, CB2 3EA, UK 

⁴⁶Sukkulenten-Sammlung Zürich / Grün Stadt Zürich, Mythenquai 88, 8002 Zürich, 
Switzerland 

⁴⁷School of Agriculture, Food and Ecosystem Sciences, University of Melbourne, Burnley 
Campus, Boulevard Drive, Richmond, Victoria 3121, Australia 

⁴⁸Evolution and Ecology Research Centre, University of New South Wales, Sydney New 
South Wales 2052, Australia. 

⁴⁹National Institute for Research in Amazonia (INPA), Manaus, Amazonas, Brazil 

⁵⁰Université de La Réunion, UMR PVBMT, Saint-Pierre, Reunion, France 

⁵¹Department of Biology, Section of Ecology and Taxonomy, Athens, Greece 

⁵²CIRAD, UPR BioWooEB, F-34398 Montpellier, France 

⁵³BioWooEB, Univ Montpellier, Cirad Montpellier France 

⁵⁴Department of Forest Ecology and Management, Swedish University of Agricultural 
Sciences (SLU), Umeå, Sweden 

⁵⁵University and Jepson Herbaria, University of California Berkeley, USA 

⁵⁶Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91120, Palaiseau, 
France 

⁵⁷Institute of Botany, Department of Ecosystem Management, Climate and Biodiversity, 
BOKU University, Vienna, Austria 

⁵⁸Faculty of Resource Management, HAWK University of Applied Sciences and Arts, 
Daimlerstraße 2, 37075 Göttingen, Germany 

⁵⁹Plant Ecology and Ecosystems Research, Georg-August University of Göttingen, 37073 
Göttingen, Germany 

⁶⁰AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France 

⁶¹University of New South Wales - School of Biological, Earth and Environmental 
Sciences - Evolution & Ecology Research Centre - Faculty of Science 

⁶²The University of Melbourne, Department of Forest and Ecosystem Science 

⁶³Institute of Botany, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany 

⁶⁴Department of Botany, Bhattadev University, Bajali, Assam, India 781325 

⁶⁵Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, 305-
8686, Japan 

⁶⁶Terrestrial Ecology and Modelling (TEaM) Lab, Department of Environmental Science 
and Engineering, SRM University-AP, Amaravati-522502, Andhra Pradesh, India 

⁶⁷Centre for Geospatial Technology, SRM University-AP, Amaravati-522502, Andhra 
Pradesh, India 

⁶⁸School of Natural Sciences, Macquarie University, Sydney, Australia 

⁶⁹Dept of Plant Ecology and Ecosystems Research, Albrecht-von-Haller Inst. for Plant 
Sciences, Univ. of Goettingen, Göttingen, Germany 

⁷⁰Think Nature Inc., Urasoe City, Japan. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 28, 2025. ; https://doi.org/10.1101/2025.08.25.671920doi: bioRxiv preprint 

https://doi.org/10.1101/2025.08.25.671920
http://creativecommons.org/licenses/by/4.0/


⁷¹Faculty of Science, University of the Ryukyus, Nishihara, Japan. 

⁷²Climate and Natural Resources Group, NSW Department of Primary Industries and 
Regional Development, Ourimbah, NSW, Australia 

⁷³Federal Rural University of Pernambuco, Serra Talhada Academic Unit, CEP: 56909-
535, Serra Talhada, PE, Brazil 

⁷⁴Forest Botany, Technical University of Dresden, Pienner Straße 7, 01737 Tharandt, 
Germany 

⁷⁵Departamento de Sistemas y Recursos Naturales, Escuela Técnica Superior de 
Ingenieros de Montes, Universidad Politécnica de Madrid, 28040, Madrid, Spain 

⁷⁶School of Biological Sciences and Te Pūnaha Matatini, Waipapa Taumata Rau, 
University of Auckland, Auckland, 1010 New Zealand 

⁷⁷Universidade Federal do Sul da Bahia, Centro de Formação em Ciências Agroflorestais, 
Praça José Bastos, s/n, Centro, 45600-923 Itabuna, BA, Brazil 

⁷⁸Department of Physical and Environmental Sciences, University of Toronto 
Scarborough, Toronto, Ontario, Canada 

⁷⁹Jackson School of Geosciences, Department of Earth and Planetary Sciences, University 
of Texas at Austin, United States of America 

⁸⁰Manaaki Whenua – Landcare Research, Lincoln, New Zealand 

⁸¹Self-employed 

⁸²Department of Ecology and Environmental Science, Assam University, Silchar 788011, 
Assam, India 

⁸³Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, BR 

⁸⁴Wildlife Conservation Society, Tanzania Country Program, Nature-Based Solutions, P. 
O Box 5196, Dar es Salaam, Tanzania 

⁸⁵Centro Universitário UniFG, Av. Governador Nilo Coelho, 4911, São Sebastião, 
Guanambi, Bahia, CEP 46430-000, Brazil 

⁸⁶Colégio Estadual Francisco Moreira Alves. Jaborandi-Bahia. 

⁸⁷Universidade de São Paulo, Instituto de Biociências, Cidade Universitária, São Paulo, 
SP, Brazil 

⁸⁸Universidade Estadual de Campinas, Departamento de Biologia Vegetal, Instituto de 
Biologia, Centro de Ecologia Integrativa, Campinas, Brazil 

⁸⁹Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de 
México, Ciudad de México, Mexico 

⁹⁰Division of Forest and Biomaterials Sciences, Graduate School of Agriculture, Kyoto 
University, Kyoto 606-8502, Japan 

⁹¹CSIRO Environment, Canberra, Australian Capital Territory, Australia 

⁹²Centro de Formação em Ciências Agroflorestais, Universidade Federal do Sul da Bahia, 
BR 415, km 29, Ilhéus, BA 45613-204, Brazil 

⁹³Department of Forest Resources & Environmental Conservation, Virginia Tech, 319E 
Cheatham Hall, Blacksburg, VA 24061, USA 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 28, 2025. ; https://doi.org/10.1101/2025.08.25.671920doi: bioRxiv preprint 

https://doi.org/10.1101/2025.08.25.671920
http://creativecommons.org/licenses/by/4.0/


⁹⁴University of California Berkeley, Berkeley, USA 

⁹⁵University of Antananarivo, Ecole Supérieure des Sciences Agronomiques, Mention 
Foresterie et Environnement, BP 175 Antananarivo 101, Madagascar 

⁹⁶School of Biological Sciences, Monash University, Victoria 3800, Australia 

⁹⁷Area de Ecología, Facultad de Ciencias Biológicas y Ambientales, Departamento de 
Biodiversidad y Gestión Ambiental, Universidad de León, Campus de Vegazana s/n, 
24071, León, Spain 

⁹⁸Smithsonian Tropical Research Institute, Ancón, Panama City, Panama 

⁹⁹Instituto de Ciencias Ambientales y Biodiversidad, Universidad de Panamá, Estafeta 
Universitaria, Panamá 

¹⁰⁰Forest Research Group, INDEHESA, University of Extremadura, Plasencia, Spain 

¹⁰¹Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, 
Universidad Nacional Autónoma de México, Tercer Circuito sn de Ciudad Universitaria, 
Mexico City, 04510, Mexico 

¹⁰²Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United 
States 

¹⁰³Ctrees, Pasadena, CA, United States 

¹⁰⁴Center for Tropical Research, Institute of the Environment and Sustainability, 
University of California Los Angeles, Los Angeles, CA, United States 

¹⁰⁵Department of Biology, University of Oxford, Oxford, United Kingdom 

¹⁰⁶Pembroke College, University of Oxford, Oxford, United Kingdom 

¹⁰⁷Instituto de Geología, Universidad Nacional Autónoma de México, Circuito de la 
Investigación Científica, Ciudad Universitaria, C.P. 04510, Ciudad de México, México 

¹⁰⁸Laboratorio Nacional de Geoquímica y Mineralogía, Universidad Nacional Autónoma 
de México, Circuito de la Investigación Científica, Ciudad Universitaria, C.P. 04510, 
Ciudad de México, México 

¹⁰⁹Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of 
Goettingen, Untere Karspüle 2, D-37073 Göttingen, Germany 

¹¹⁰School of Environment, University of Auckland, Auckland, New Zealand 

¹¹¹Institute of Ecology and Earth Sciences, University of Tarty, Tartu, Estonia 

¹¹²School of the Environment, The University of Queensland, St Lucia, Queensland, 
Australia 

¹¹³Department of Ecology and Environmental Sciences, Pondicherry University, 
Puducherry, 605014, India 

¹¹⁴Forest Ecology and Forest Management Group, Wageningen University & Research, 
Wageningen, The Netherlands 

¹¹⁵Naturalis Biodiversity Center, Leiden, The Netherlands 

¹¹⁶Quantitative Biodiversity Dynamics, Faculty of Science, Utrecht University, Utrecht, 
The Netherlands 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 28, 2025. ; https://doi.org/10.1101/2025.08.25.671920doi: bioRxiv preprint 

https://doi.org/10.1101/2025.08.25.671920
http://creativecommons.org/licenses/by/4.0/


¹¹⁷Institute of Ecology, College of Urban and Environmental Sciences, Peking University, 
Beijing 100871, China 

¹¹⁸State Key Laboratory for Vegetation Structure, Function and Construction (VegLab), 
Peking University, Beijing 100871, China 

¹¹⁹LMGC, Univ Montpellier, CNRS, Montpellier, France 

¹²⁰Universidad del Tolima GIBDET 

¹²¹Jardín Botánico de Bogotá 

¹²²Center for Research on Sustainable Forests, University of Maine, Orono, ME 04469, 
USA 

¹²³School of Geography, Earth and Atmospheric Sciences, The University of Melbourne, 
Parkville, Victoria, Australia 

¹²⁴Smithsonian Tropical Research Institute, Balboa, Republic of Panama 

¹²⁵Independent researcher 

¹²⁶Department of Biology, Philipps University Marburg, Karl-von-Frisch-Straße 8, 
Marburg, 35043 Germany  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 28, 2025. ; https://doi.org/10.1101/2025.08.25.671920doi: bioRxiv preprint 

https://doi.org/10.1101/2025.08.25.671920
http://creativecommons.org/licenses/by/4.0/


Abstract 1 

Wood density influences how quickly woody plants grow, how long they live and how 2 

much carbon they store, yet its global variation remains poorly mapped. Here we 3 

combined 109,626 wood density measurements from 16,829 species with 300,949 4 

vegetation plots to produce a km-scale map of community-weighted wood density for 5 

every woody biome. Our model led to a prediction accuracy 32–51 % higher than previous 6 

global products, and a 1.8–3.7-fold wider wood density range (0.28–1.00 g cm⁻³; global 7 

mean: 0.57 g cm⁻³) than previously assumed. Spatial cross-validation showed low bias 8 

(±2.5 % of the mean), and uncertainties decreased from 20% in poorly sampled drylands 9 

and boreal regions to 5% in data-rich temperate forests. Mean annual temperature was 10 

the best predictor of community-weighted mean wood density, increasing by 11 

0.01 g cm⁻³ for every 1°C change. We deliver a low-bias, high-resolution wood density 12 

layer for Earth system models, together with spatially explicit error maps. This study 13 

represents a major step forward for carbon accounting and trait-based forecasts of 14 

vegetation change. 15 

 16 

Keywords: wood density, aridity, carbon, functional traits, map, spatial autocorrelation, 17 

temperature  18 
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The world’s woody vegetation plays a major role in the global carbon cycle. It sequesters 19 

and stores carbon and, in doing so, slows down anthropogenic climate change1. 20 

Monitoring and protecting carbon stocks is an essential mitigation strategy2,3 and has 21 

been enshrined in policy commitments4. However, we still lack a reliable global 22 

quantification system for carbon storage in live vegetation5. Such a system requires wall-23 

to-wall quantification of the volume of woody plants and the density of their wood (dry 24 

mass per unit green volume; g cm-3). Volume estimates are rapidly improving thanks to a 25 

growing array of air- and spaceborne sensors6–8, but measuring wood density relies on 26 

species identification and tissue extraction on the ground9. This process is labor-intensive 27 

and leaves massive data gaps: species composition and mean wood densities are mostly 28 

unobserved by satellites, potentially biasing carbon estimates10. It is thus critical to bridge 29 

gaps in wood density information with robust statistical models.  30 

Several wood density maps have been produced at global11–13 and regional14–16 31 

scales, but three types of inconsistencies are hampering efforts towards comparability 32 

across maps. First, wood density cannot be measured for every single plant in a focal area, 33 

meaning values must be estimated17. Studies differ in how they generate estimates, what 34 

databases they draw on and how they standardize wood density values18. Second, studies 35 

use different definitions and datasets to aggregate wood density at the level of ecological 36 

communities. To account for species that are more abundant or biomass-rich than others, 37 

community means are usually obtained by weighting the contribution of all individuals in 38 

a focal area equally or in proportion to their cross-sectional (or basal) trunk area19. These 39 

community-weighted means appear robust to the choice of weights15, but require 40 

comprehensive field inventories, which are rare, so studies often use geographically 41 

imbalanced inputs11, include unevenly and partially sampled communities12,13, or average 42 

directly across species occurrence records16. Third, modelling wood density across spatial 43 
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scales represents a great challenge. At broad scales, community-weighted mean wood 44 

density varies with floristic composition19, reflecting shifts in ecological strategies 45 

between taxonomic groups (e.g., angiosperms vs. gymnosperms), life forms (e.g., 46 

succulents vs. non-succulents) and among species within these groups. All else being 47 

equal, plants with high wood density are expected to be shorter and grow slower in 48 

volume than less dense plants20–22. During early ecological succession, these high wood 49 

density plants are at a disadvantage in the competition for light, but in the long run, high 50 

wood density reduces hydraulic and mechanical risks and increases competitive ability23. 51 

We thus expect low mean wood densities in fast-turnover environments, such as under 52 

frequent cycles of disturbance or recovery, or on fertile soils24–27, and high wood densities 53 

in hot and dry areas28–30. However, it is a major challenge to select appropriate predictors 54 

and account for spatial autocorrelation in model calibration and validation31. 55 

Here, we map community-weighted mean wood density at 1 km2 resolution 56 

globally, mindful of the three challenges outlined above. To produce the map, we used a 57 

major update of the Global Wood Density Database (GWDD v.2)32, which contains over 6x 58 

times as many wood density records (109,626) as the original and over 2x as many 59 

species (16,829), all rigorously quality-checked and standardized33. We then compiled a 60 

geographically balanced dataset of 300,949 vegetation inventories with detailed floristic 61 

information across all woody biomes and used it to compute community-weighted wood 62 

density, here defined as mean wood density weighted by basal area. Third, we mapped 63 

community-weighted mean wood density with random forest models across the globe at 64 

1 km2 resolution. We selected 10 environmental predictors with biologically meaningful 65 

links to wood density variation, thoroughly validated the wood density map, and 66 

compared it with three published global maps11–13 as well as a regional map15. Our results 67 
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represent a major step forward in creating a reliable global carbon quantification system 68 

and improving climate change assessments. 69 

70 
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Results 71 

Global distribution of community-weighted mean wood density 72 

Community-weighted mean wood density varied more than 3-fold from 0.28 g cm-3 to 73 

1.00 g cm-3 across the globe, with a mean of 0.57 g cm-3 and standard deviation of 0.104 g 74 

cm-3 (95% confidence interval, 95%CI: 0.40 to 0.77 g cm-3, npixel = 86.7 million, Fig. 1a). 75 

Values displayed a bimodal distribution with one mode at 0.42 g cm-3, reflecting 76 

gymnosperm-dominated forests at high latitudes, and a second mode at 0.64 g cm-3, 77 

reflecting tropical forests and savannas (Fig. 1a, Table S1). Dry biomes, such as deserts 78 

and xeric shrublands had the highest average densities at 0.66 g cm-3 (95%CI: 0.47 to 0.79 79 

g cm-3, Table S1), but also large biogeographic variation. Our map predicted much higher 80 

average wood densities of 0.76 g cm-3 (95%CI: 0.64 to 0.87 g cm-3) than the dry-biome 81 

average across xeric environments in Australia and much lower densities of 0.46 g cm-3 82 

(95%CI: 0.40 to 0.63 g cm-3) in succulent-dominated Baja California. In the boreal zone, 83 

larch-dominated forests of Northeast Siberia exceeded the boreal average by ca. 20%, 84 

with wood densities of 0.50 g cm-3 (95%CI: 0.43 to 0.63 g cm-3). 85 

 86 

Map validation and error assessment 87 

To create spatially explicit estimates of uncertainty and bias, we performed a spatially 88 

stratified cross-validation. We selected a geographically balanced subset of 1,000 plots 89 

(median area: 0.64 ha, Fig. 1d), compared modelled and observed wood densities, and 90 

used the results to map uncertainty (Fig. 1b) and mean error (or bias, Fig. 1c). Overall bias 91 

was low, at -0.003 g cm-3 (95%CI: -0.017 to 0.009), or -0.4% (-2.3 to 2.3, Table S2) of the 92 

predicted wood density. The mean uncertainty was 0.069 g cm-3 (or 12.4%, Fig. S2), and 93 

it varied substantially across space (95%CI: 0.049 to 0.087 g cm-3, or 8.0 to 16.5%).  94 
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To assess the importance of spatial autocorrelation, we tested how uncertainty 95 

depended on the distance of predictions from training samples (Table S3). Prediction 96 

errors were lowest directly adjacent to training data (0.043 g cm-3, i.e., 7.8% for a 97 

reference wood density of 0.55 g cm-3, Tables S4-5) but increased when training data were 98 

100 km away (0.065 g cm-3, or 11.8%). Spatial autocorrelation reduced at larger distances, 99 

but uncertainty still increased up to 0.080 g cm-3 (14.5%) at 1,000 km. Random Forest 100 

models, our default approach, captured this spatial structure more effectively than linear 101 

regression models, but differences between approaches were small when modelled 102 

residuals were spatially interpolated (Fig. S3-4). 103 

Uncertainties in community-weighted wood density were lowest in regions such 104 

as USA, which are densely sampled, with a mean uncertainty of 0.053 g cm-3 (10.4%, npixel 105 

= 7.0 million) and a 95% range from 0.048 to 0.067 g cm-3 (7.0 to 15.5%, locally down to 106 

5%).  By contrast, in South Africa, uncertainty reached 0.086 g cm-3 (12.8% of the mean, 107 

npixel = 0.8 million) and varied from 0.079 to 0.092 g cm-3 (11.2 to 13.7%). The highest 108 

relative uncertainties (up to 15-20%) were observed in the boreal zone where mean 109 

wood density was low and plot coverage was sparser than in the temperate zone (Table 110 

S2, Fig. 1b, Fig. S12). There was some evidence for regional prediction biases, such as 111 

underestimation at high and overestimation at low wood densities, but both were low, in 112 

the range of 0.01-0.02 g cm-3 (Fig. 1c and Fig. S5, Table S2).113 
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 114 

Fig. 1: Global maps of wood density, prediction errors and validation plots. Shown is the predicted global distribution of community-weighted mean wood 115 

density (g cm-3, a), relative prediction uncertainty (% of predicted wood density, b), relative prediction bias (% of predicted wood density, c) and the validation plots 116 

(d). Maps have a 1 km resolution in Mollweide equal area projection. In panels a-c, insets show both the colour scale and the histogram of values. In panel d, the inset 117 

shows predicted vs. observed wood densities for all validation plots in basic cross-validation (i.e., not accounting for distance to training data). Areas without tree or 118 

shrub cover are masked. For absolute uncertainty and bias maps see Fig. S5.  In panels b and c, colour scale breaks have been matched to cover the same 5% intervals.119 
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Environmental and biogeographic determinants of wood density 120 

The most important predictor of community-weighted mean wood density variation was 121 

mean annual temperature (Fig. 2a, Fig. S6, Table 1). For an increase in temperature by one 122 

standard deviation (sdMAT = 7.24C), wood density increased by 0.075 g cm-3 (multiple 123 

regression model, 95% CI from 0.075 to 0.076), or roughly by 0.01 g cm-3 for a 1C change. 124 

Site water balance was the next most important predictor (Fig. 2b, Table 1), with 125 

increasing water availability leading to a decrease in wood density (-0.012 g cm-3, 95% CI 126 

from -0.012 to -0.012, no change due to rounding, Fig. S6). These patterns were robust to 127 

substitution to other climatology layers (Table S1). Wood density further showed 128 

consistent, but moderate decreases of -0.017 g cm-3 with cyclone frequency (-0.017 to -129 

0.017) and gymnosperm proportion (-0.018 to -0.017), but their importance was low for 130 

wood density mapping (Table 1).   131 

 132 

Fig. 2: Examples of environmental wood density variation across phylogenetic groups and life forms. 133 

Panel a: relationship between mean annual temperature (°C) and community-weighted mean wood density 134 

(g cm-3) for plots where angiosperms and gymnosperms co-exist (n = 249,354). Wood density varies with 135 

temperature for angiosperms and gymnosperms separately as well as when both groups are combined 136 

(“whole community”). Lines are linear regression lines for each subset. The corresponding slope estimates 137 

and 95% CIs are provided in the top right corner. For comparability across predictors, slope estimates are 138 

reported with respect to standardized mean annual temperature, i.e., in units of g cm-3 for one standard 139 
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deviation shift in temperature (sdMAT = 7.24C). Panel b: relationship between site water balance, an 140 

indicator of water availability for plant growth (sdSWB = 320 kg m-2 yr-1, details in Table S6) and community-141 

weighted mean wood density across communities with co-occurring succulents and non-succulents (n = 142 

3,108). Succulents were defined broadly as trees or tree-like plants with any type of succulent habit (e.g., 143 

Baobab, Aloe tree, Saguaro). This includes stem-water storage and succulent roots or leaves. Note that wood 144 

density decreases with water availability in both subgroups in panel b, but increases when the subgroups 145 

are aggregated, which is due to decreasing succulent presence at high water availability (Simpson’s 146 

paradox). Such effects reduce predictive power when modelling community-weighted means (cf. Fig. S6b). 147 

 148 

To assess the consistency and utility of temperature and aridity for wood density 149 

mapping, we computed temperature and aridity effects in two subgroups (Fig. 2), 150 

representing differences in xylem structure and leaf habit (angiosperms vs. 151 

gymnosperms) and drought resistance strategies (succulent vs. non-succulent woody 152 

plants). In mixed forests, wood density increased with temperature both at aggregate 153 

level (0.052 g cm-3, 95%CI: 0.051 to 0.053, simple linear regression) and separately in 154 

gymnosperms and angiosperms (0.057 g cm-3 and 0.042 g cm-3, with 95%CIs from 0.057 155 

to 0.058, and from 0.041 to 0.043, respectively). Wood density also decreased with 156 

increasing water availability in co-occurring succulent (-0.019 g cm-3 for site water 157 

balance, -0.022 to -0.016) and non-succulent plants (-0.011 g cm-3, -0.017 to -0.005), but 158 

the declining presence of succulents in areas with higher water availability reversed the 159 

effect at aggregate levels (Fig. 2b). 160 

Layer 
Pearson’s 

r 

Simple  
regression 
coefficient 

Multiple 
regression 
coefficient 

Importance  
(spatial RF 
validation) 

Mean annual temperature (°C) 0.57 0.060 [0.060, 0.061]  0.075 [0.075, 0.076] 18 

Site water balance (kg m-2 year-1) -0.22 -0.024 [-0.024, -0.023] -0.012 [-0.012, -0.012] 5 

Soil sand content (g kg-1) -0.03 -0.003 [-0.003, -0.003] -0.003 [-0.003, -0.002] 4 

Burned area (%) 0.03 0.003 [0.003, 0.004] -0.004 [-0.005, -0.004] 3 

Deciduous angiosperms proportion (%)  -0.04 -0.004 [-0.005, -0.004] 0.015 [0.014, 0.015] 3 

Elevation (m) -0.17 -0.019 [-0.019, -0.018] 0.013 [0.013, 0.014] 2 

Gymnosperm proportion (%) -0.45 -0.048 [-0.048, -0.047] -0.017 [-0.018, -0.017] 1 
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Mean wind speed (m s-1) -0.20 -0.022 [-0.022, -0.021] 0.011 [0.011, 0.012] 1 

Cation exchange capacity (mmol(c) kg-1) -0.33 -0.035 [-0.035 -0.034] 0.006 [0.006, 0.007] 0 

Cyclone frequency (yr-1) -0.04 -0.005 [-0.005, -0.004] -0.017 [-0.017, -0.017] 0 

Table 1. Predictor importance and effect sizes for wood density mapping. Shown are 10 predictors 161 

used to create the global map of community-weighted mean wood density, their bivariate correlation with 162 

wood density (Pearson’s r), their effect size in a multiple regression model (g cm-3) and their importance in 163 

a random forest model (cf. methods). All predictors were standardized, so effect sizes correspond to shifts 164 

in wood density (in g cm-3) for a change of one standard deviation of the predictor variable. Predictors are 165 

sorted from most important to least important. This approach downweighs predictors with regional effects 166 

(e.g., cyclone frequency). Sources and definitions of the predictors can be found in Table S6. Correlations 167 

between predictors (Pearson’s r < 0.6 throughout) are shown in Figure S13.  168 

 169 

Comparison with alternative mapping approaches 170 

We found that the present map was a significant improvement compared to previous 171 

mapping approaches. Uncertainty was reduced by 13% (ratio of variances) compared to 172 

a map produced with the previous GWDD (Fig. S7, uncertainty of 0.074 g cm-3, 95% 173 

interval from 0.49 to 0.99), and previous regional biases, such as an overestimation of 174 

wood densities across Australia (0.077 g cm-3 or 10.3% of mean wood density), were 175 

reduced to less than 2.5% (Fig. 1c). The present map also considerably improved over 176 

three published global wood density maps (Table S7), two of which calculated mean wood 177 

density directly from samples without weighting by basal area (“Boonman2020”12 and 178 

“Yang2024”13) and one that used the same definition of community-weighted means as 179 

our study (“Mo2024”11). There were similarities with the published maps in terms of 180 

global means (0.55 to 0.56 g cm-3) and qualitative trends (R2 of 0.60 to 0.83, Fig. S8-10, 181 

Table S7). However, our study revealed a 1.8-3.7 times larger spatial variation in wood 182 

density than published previously (Table S7), and we also improved mapping accuracy, 183 

reducing uncertainty by 51% compared to Boonman2020, 45% compared to Yang2024, 184 

and 32% compared to Mo2024.  185 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 28, 2025. ; https://doi.org/10.1101/2025.08.25.671920doi: bioRxiv preprint 

https://doi.org/10.1101/2025.08.25.671920
http://creativecommons.org/licenses/by/4.0/


Improvements were also noticeable regionally. Over Amazonian forests, we found 186 

a clear increase from 0.59 g cm-3 (95%CI: 0.55 to 0.63) in Southwest Amazon moist forests 187 

to 0.65 g cm-3 (95%CI: 0.61 to 0.69) in Guiana lowland moist forests (Fig 3a). This result 188 

replicated trends in the raw plot data (0.58 vs. 0.66 g cm-3) and a regional map (albeit 189 

weaker, Fig. S11). Overall, predictive power was low (R2 = 0.26), but comparable to the 190 

regional map (Fig. S11) and considerably higher than in previously published maps (R2 = 191 

0.03-0.05), which predicted little to no variation across the Amazon (Fig. 3, b-d). 192 

193 

Fig. 3: Wood density variation across Amazonian forests, as predicted from global wood density 194 

maps. Shown is the wood density gradient across Amazonia, as predicted by the present study and three 195 

published global maps (panels a-d), their errors across validation plots (e-h), and a plot of observed vs. 196 

predicted wood densities (i-l, n = 152, Fig. 1d). All depicted quantities are in g cm-3. Errors are computed 197 

via cross-validation (e and i) or direct map-plot comparisons (f-h and j-l). Blue lines in panels i-l are least 198 

squares regression lines with 95%CI envelopes. Note that variation in the validation data occurs at much 199 

smaller scales (~1 ha plots) than the prediction scale (~1 km2 pixels), which may explain why R2 values are 200 

low and observed wood density ranges larger in the validation data (approx. 0.45 to 0.8 g cm-3) than in any 201 

of the maps. For a comparison with a local wood density map, the same plot can be found in Fig. S11.  202 
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Discussion 203 

Here we mapped community-weighted mean wood density at global scale using a 204 

combination of wood density measurements and vegetation inventories, including nearly 205 

17,000 species and more than 300,000 plot locations. The new wood density map 206 

achieved 32-51% higher accuracy than previous studies, revealed a 1.8-3.7 times larger 207 

variation and displayed clear environmental and biogeographic patterns. Our findings 208 

underscore the tight coupling between wood density and fundamental plant-ecological 209 

strategies29, which makes it a valuable predictive trait for modelling vegetation 210 

composition and dynamics across landscapes and through time34. We also carried out a 211 

detailed, spatial assessment of prediction errors, which revealed low biases (±2.5 % of the 212 

mean), and uncertainties ranging from 20% in the most poorly sampled regions to 5% in 213 

the best-sampled regions. Our work provides a critical improvement since wood density 214 

is a key component of carbon accounting at landscape35,36, regional10 and global scales7,11, 215 

requiring comprehensive, spatially explicit error budgets.   216 

Our results differed from previous global studies that did not account for plant size 217 

when averaging at community-level12,13, but also outperformed an existing map of 218 

community-weighted mean wood density11 (Fig. 3, Figs. S8-10). Most of these 219 

discrepancies likely stemmed from the improved spatial coverage of plot collection in the 220 

present study and from the much larger and curated collection of wood density estimates 221 

of the GWDD v.2. By contrast, the inclusion of heavily human-modified forests in earlier 222 

training sets11 is unlikely to explain the narrower variance in those maps: strong 223 

anthropogenic disturbance would be expected to increase wood density variation among 224 

communities, not reduce it37. The performance and spatial patterns of the new map were 225 

more comparable to those seen in regional maps15, but there were still notable 226 

mismatches, for example in the strength and extent of gradients across Amazonia (Figure 227 
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S11). To address these differences, future mapping efforts may benefit from considering 228 

additional soil and disturbance variables, which are expected to be the main drivers of 229 

wood density variation across Amazonia14,15.  230 

 The study at hand also showed that community-weighted mean wood density 231 

followed predictable patterns across large environmental gradients. Given balanced and 232 

high-quality inputs, most patterns could be predicted from a few biologically informative 233 

variables, potentially reducing the need for large predictor sets and complex model 234 

tuning11,13,38. For example, for an increase in temperature by one standard deviation, 235 

wood density was estimated to increase by 0.075 g cm-3, or by 0.01 g cm-3 for a 1C change. 236 

Conversely, wood density decreased by -0.012 g cm-3 with a change in one standard 237 

deviation of site water balance, the second most important predictor. This confirmed the 238 

hypothesis that higher exposure to heat and drought stress favours slow-growing plants 239 

with dense wood28. There were regional deviations, e.g., high wood densities both in the 240 

driest (Sahel) and wettest parts (Congo Basin) of tropical Africa, but the strong and 241 

consistent relationship of community-level wood density with temperature was 242 

surprising (Fig. 2a). Temperature effects on wood density have rarely been explained 243 

physiologically39, and while they also exist at the species and intraspecific level, they 244 

usually remain less pronounced than the effects of water availability33,38. A possible 245 

explanation is that aridity tends to limit which strategies are viable in terms of building 246 

woody tissues, while temperature tends to determine which strategies are successful, e.g., 247 

at high aridity, plants with high wood density increasingly become viable, but, due to low 248 

growth rates, they do not dominate biomass accumulation until heat stress is also high. 249 

Global warming and increasing drought stress may thus lead to a reshaping of plant 250 

communities towards higher wood densities. To date, however, empirical studies do not 251 

support such a densification trend or even suggest the opposite pattern40. 252 
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More generally, the interpretation of environmental effects on wood density is 253 

complex. Climate variables such as temperature are linked to multiple stressors, and 254 

wood density is a compound trait that also summarizes several wood anatomical 255 

properties, including those of vessels, fibres and parenchyma cells41, and correlates with 256 

whole-plant architecture42,43. Links between wood density and the environment may thus 257 

arise indirectly44, or be mediated by tradeoffs45, trait-trait covariation46, and tree size47. 258 

Soluble organic compounds, so-called “extractives”, can also be a confounding factor, as 259 

they are usually not removed during wood density determination48. They have negligible 260 

impact on carbon estimates, as they account for a small share of stem biomass in most 261 

plants and possess carbon contents comparable to wood (40-50%)49. However, they may 262 

bias relationships between wood density and environmental factors and explain regional 263 

anomalies, such as the comparatively high wood densities in forests of extractive-rich 264 

larches50 across Siberia (Fig. 1a). 265 

 A key concern in mapping biological quantities across space is spatial 266 

autocorrelation, which comes about, for example, due to dispersal limitations of 267 

organisms, or unmodelled spatial variation in climatic and edaphic predictors, and which 268 

influences both model fitting51 and testing31. Here, prediction uncertainty in random 269 

forest models increased with distance from training data over the entire range that we 270 

tested, i.e., from 1 to 1,000 km, and most clearly (by 129%) up to 100 km. This finding 271 

reveals that a considerable portion of predictive power is due to spatial autocorrelation, 272 

far more than suggested by previous studies11. Confirmation of this result was provided 273 

by multiple regression models, which were generally inaccurate (R2 ~ 0.3, Fig. S4), but 274 

improved substantially when spatially interpolated residuals were added to predictions 275 

(R2 up to 0.75). While spatial autocorrelation is often seen as a confounding factor in 276 

ecology, it also presents an opportunity to correct predictions through careful sampling 277 
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protocols and spatial interpolation. For example, we estimated accuracy to be highest 278 

across systematically sampled regions such as USA (0.048 g cm-3, or down to 5%). 279 

Therefore, investment in gridded field data collections in poorly sampled regions (e.g., 280 

through national forest inventories and/or extension of plot networks) holds one of the 281 

keys to producing high-quality wood density and carbon maps9.  282 

 This study suggests two possible areas of improvement. Stressful environments 283 

spur a wide variety of strategies in plants to reduce mortality risks52. Wood density maps 284 

may considerably improve in accuracy if trade-offs between these strategies and wood 285 

density are better accounted for and more accurate predictor maps are created. In our 286 

study, succulents showed the same increase in wood density with aridity as co-occurring 287 

non-succulents (Fig. 2b). However, the generally light-wooded succulents increasingly 288 

dominated in dry areas – likely due to water storage and the often-co-occurring, 289 

transpiration-efficient CAM photosynthesis53 –, which reversed the relationship with 290 

aridity at aggregate levels (Simpson’s paradox, Fig. S6b). Similar patterns could emerge 291 

for other stress-resistance or stress-avoidance strategies (e.g., deciduousness), meaning 292 

reliable maps of stressors, life forms and growth habits are needed for wood density 293 

mapping.  294 

Second, a large proportion of wood density variation occurs at scales smaller than 295 

1 km10, reflecting the fine-scale mosaics of disturbance37 and species composition19. This 296 

scaling difference led to high uncertainties (low R2) when predicting wood density at plot-297 

level from maps at km scales (Fig. 3). However, high-resolution forest age maps are now 298 

available54,55, and leveraging these maps together with high-resolution canopy heights 299 

maps56, would help map fine-scale wood density variation36. The present study will 300 

provide a robust foundation for future efforts and will help improve the accuracy of land 301 

carbon monitoring and vegetation modelling.   302 
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Methods 303 

Wood density data assembly 304 

We assembled an updated version of the Global Wood Density Database32, GWDD v.233, 305 

which reports basic wood density, defined as oven-dried mass of a wood sample divided 306 

by its green volume48 in g cm-3. We employed the same wood density definition as in the 307 

original GWDD and, to maximize taxonomic coverage, included both measurements of 308 

individual plants and averages across several individuals. We used a broad definition of 309 

wood that includes tissues from tree-like plants that lack secondary growth, such as palms 310 

and succulents. We included direct measurements of basic wood density but also wood 311 

density values obtained at different moisture levels, which were transformed to basic 312 

wood density via physical conversion factors18. Taxonomic records were standardized via 313 

the WorldFlora package57 in R58, based on World Flora Online 314 

(www.worldfloraonline.org, June 2023 release), an international initiative that 315 

supersedes The Plant List59. Fuzzy matches of taxon names were manually checked and 316 

corrected where necessary. The final database contains 109,626 records from 16,829 317 

species, with coverage across biomes and biogeographic realms33. 318 

 319 

Plot data assembly 320 

To weight wood density by relative species dominance, we assembled a global collection 321 

of 300,949 vegetation inventories – plots with taxonomic identification and 322 

measurements of stem diameter for all sampled plants – from 300,702 unique 1 km x 1 323 

km cells and 281 sources (Table S8, Fig. S12). We privileged old-growth and intact forests 324 

and, where identifiable, excluded data from woody ecosystems with strong anthropogenic 325 

impacts. We selected primarily ecological studies from protected areas, excluded heavly 326 

managed stands from national forest inventories and plantations of non-native species, 327 
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such as eucalypts planted outside of Australia. Woody ecosystems such as xeric 328 

environments with succulents or shrubs were included, with no minimum threshold in 329 

woody cover, to represent the full range of wood density variation.  330 

For each plot, we defined the community-weighted wood density CWWD by 331 

averaging across individuals i as follows: 332 

𝐶𝑊𝑊𝐷 =
∑ 𝑤𝑑𝑖𝐵𝐴𝑖𝑖

∑ 𝐵𝐴𝑖𝑖
=

∑ 𝑤𝑑𝑖𝐷𝑖
2

𝑖

∑ 𝐷𝑖
2

𝑖

 333 

Here wdi is the wood density of individual i, 𝐵𝐴𝑖 =
𝜋

4
𝐷𝑖

2 its cross-sectional (or basal) area 334 

and 𝐷𝑖 its trunk diameter. This weighting scheme gives considerably more weight to 335 

species with large canopy trees than a simple aggregation across all individuals (i.e., 336 

weighting by species abundance), but less than weighting by tree volume, since the latter 337 

depends not only on basal area, but also tree height, which also increases with trunk 338 

diameter60. While weighting schemes subtly shift the interpretation of the typical traits of 339 

communities, in practice, community-weighted means of wood density have proven 340 

robust to how different size classes are weighted15,31, and basal-area weighting remains a 341 

widely used and practical approach19.  342 

The majority of the CWWD values were computed from open access raw data on 343 

tree- or species level basal area (n = 243,776). We also identified geographical data gaps– 344 

primarily dry ecosystems in South America, South and East Africa, India –, and 345 

supplemented the collection with published surveys from these areas. Additional 346 

geographic gaps were filled by direct CWWD estimates from the literature, especially in 347 

tropical forests10,31,61 and in Russian forests62. Some of these published CWWD values 348 

have been computed from the original GWDD, so they may carry over some biases due to 349 

conversion factors18, but they fill an important knowledge gap and were therefore 350 

retained. Most of the surveys included trees measured at 10 cm in trunk diameter and 351 
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above, but this threshold varied from 1 up to 30 cm in some locations. This should not 352 

systematically bias wood density estimates, since community-weighted means tend to be 353 

robust to the choice of weighting factors15 and since large trees disproportionally 354 

contribute to basal area and woody volume31.  355 

Inventory data were matched to wood density values from the GWDD v.2 at the 356 

species and genus level following standard procedures63. Only plots with wood density 357 

values for >80% of the total basal area were retained. If two or more plots from the same 358 

source fell into the same 1 km x 1 km grid cell (Mollweide equal-area projection, 359 

ESRI:54009), their CWWD values were averaged to produce a cell-wide CWWD estimate 360 

using the terra package64. To do this, plots were averaged by weighting by their total basal 361 

area.  362 

 363 

Wood density mapping 364 

To map wood density, we assembled 10 climatic, disturbance and auxiliary layers (full 365 

definitions in Table S6), and resampled them to the 1 km x 1 km Mollweide grid also used 366 

for aggregating wood density estimates. We chose predictors in accordance with 367 

biological hypotheses about the determinants of wood density variation (stress, 368 

disturbance, soil fertility), including climatic variables for the period 1981-2010 from 369 

CHELSA/BIOCLIM+65,66, edaphic factors67, disturbance agents such as fire68 and broad-370 

scale community composition69. We also derived cyclone frequency from the best track 371 

archive70 by counting how often each 1 km x 1 km grid cell was within a 150 km radius of 372 

a cyclone track and normalizing this number by the number of years. Pairwise 373 

correlations between predictors never reached r = 0.6, which minimizes collinearity 374 

issues with attributing effects when modelling and mapping wood density71. 375 
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 Based on the set of 10 predictors, we applied random forest models to predict 376 

wood density at 1 km x 1 km resolution. We used the ranger package72. To account for 377 

spatial autocorrelation in wood density variation and improve predictions, we added 378 

spatially interpolated residuals to the final map, relying on the 25 nearest plots for each 379 

grid cell and using inverse distance weighting (1/r, where r is a plot’s distance from the 380 

target grid cell) via the R packages terra and gstat73. For comparison, we also retained the 381 

map without spatially interpolated residuals. We repeated the procedure with a multiple 382 

regression model with the same 10 predictors, again creating maps both with and without 383 

spatially interpolated residuals. We mapped wood density across all land pixels globe but 384 

then masked pixels without any woody plants (0% tree or shrub cover), using a mask 385 

from the Copernicus Global Land Cover product74. 386 

 387 

Map validation 388 

We validated the map using a subset of 1,000 plots, selected as follows. We chose a 389 

minimum sampling area of 0.25 ha to reduce noise, then selected plots via geographic 390 

stratification to avoid biasing validation towards regions of denser sampling. To this end, 391 

we subdivided the globe into 200 x 200 km grid cells, and randomly sampled one plot 392 

from each grid cell. After having drawn once from each grid cell, continued drawing from 393 

random grid cells until reaching 1,000 samples (Fig. S1). We selected 1,000 plots, as this 394 

reflects well the distance between plots in sparsely sampled areas (~100-200 km) and 395 

provides a large enough sample size to reduce randomness in validation.  396 

Once the validation plots were selected, we carried out a spatial leave-one-out 397 

(LOO) cross validation31. First, we carried out a standard LOO validation: for each of the 398 

1,000 plots, we replicated the wood density map, including spatial interpolation of 399 

residuals, based on all data except the validation plot itself and compared predicted 400 
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against observed wood density values. We then repeated this process three times, but 401 

each time removed not only the validation plot from the training data, but also all data 402 

points within an exclusion radius ranging between 1 and 1,000 km from the validation 403 

plot.30 We did not choose the exclusion radii as fixed thresholds (as in ref. 31), but drew 404 

them at random from a uniform distribution. This choice allowed us to assess spatial 405 

autocorrelation continuously up to 1,000 km. A few duplicates occurred when randomly 406 

drawn exclusion radii did not exclude any additional plots. We removed these predictions, 407 

resulting in a total of 3,841 data points for validation. 408 

 To generate error estimates for each grid cell in the wood density map, we 409 

modelled the error distribution depending on the predicted wood density, the distance 410 

from the nearest five plots and the interaction of both (Table S3). The best fit to the data 411 

was obtained by modelling uncertainty with a t location-scale or “student” distribution, 412 

which is useful for modeling data distributions with heavier tails than the normal 413 

distribution:  414 

𝑃(𝑥) = 𝐶𝜎𝑡,𝜈 (
𝜈

𝜈 + (𝑥/𝜎𝑡)2
)

(𝜈+1)/2

 415 

 416 

This distribution approaches the normal distribution as 𝜈 approaches infinity, while 417 

smaller values of 𝜈 yield heavier tails. With this distribution, the variance is given by 418 

𝑣𝑎𝑟 = 𝜎𝑡 × 𝜈/(𝜈 − 2). The fitting was performed with the package brms75 and suggested 419 

a shape parameter of either  𝜈 = 5 or 𝜈 = 6. To ensure comparable error structure across 420 

models, we fixed 𝜈 = 5 and then mapped both the mean error (bias) and uncertainty in 421 

wood density. Uncertainty can be directly expressed via the t parameter, but here we 422 

report t
∗ =  1.11 ×  t, which is comparable to the standard deviation of a normal 423 

distribution, since 68.26% of data points lie within [-t
∗, t

∗]. 424 

 425 
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Assessment of environmental determinants 426 

To evaluate the relative importance of environmental variables for wood density mapping 427 

we re-created the global wood density map 10 times, each time dropping one of the 428 

predictors, carrying out a spatial cross-validation and mapping uncertainty across woody 429 

ecosystems. Predictors that, upon dropping, led to the largest loss of accuracy globally, 430 

were considered the most important for the mapping. To reduce the computational 431 

burden in spatial cross-validation, we created a reduced data set of n = 74,725 plots by 432 

applying a 10 km x 10 km filter and selecting a single plot per grid cell for model training. 433 

We verified that this choice had negligible impacts on model accuracy. For an assessment 434 

of the direction of effects, we also computed simple linear regression models, with 435 

community-weighted mean wood density regressed against each predictor separately, 436 

and fitted a multiple linear regression model with the same predictors. More precisely, 437 

we used the model 𝑤𝑑𝑖 =  𝛽0 + ∑ 𝛽𝑗𝑥𝑖𝑗 + 𝜖𝑖
10
𝑗=1 , where wdi is the community weighted 438 

wood density of plot i, xij is predictor variable j for observation i, and 𝜖𝑖 is the residual for 439 

observation i, distributed as 𝜖𝑖~ 𝑁(0, 𝜎2). Predictors were scaled to one standard 440 

deviation to ensure comparability of effect sizes.  441 

Climatic predictors were found to be the most important ones in predicting spatial 442 

variation in wood density, so we decided to carry out two additional robustness tests. 443 

First, we used the TerraClimate76 and ERA5-Land77 datasets in place of the CHELSA data 444 

and evaluated changes in the global wood density map.  In the case of mean annual 445 

temperature and mean wind speed, we used like-for-like substitutions. In the case of 446 

CHELSA’s site water balance variable, there was no direct equivalent, so we chose other 447 

aridity-related predictors, such as climatic water deficit, the difference between potential 448 

and actual evapotranspiration (TerraClimate), and potential evapotranspiration (ERA5-449 

Land).  450 
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Variation in wood density was also found to depend on wood anatomy and plant 451 

life forms. If either of those factors changed the effect of environmental predictors, not or 452 

insufficiently accounting for them could induce bias and increase uncertainty in wood 453 

density maps. We tested the consistency of predictions across gymnosperms and 454 

angiosperms, as these are species-rich and globally dominant plant groups that differ in 455 

wood anatomy and leaf habit, and across succulents and non-succulents, as water storage 456 

in plant organs is a key drought-resistance strategy, which has often co-evolved with 457 

transpiration-reducing CAM photosynthesis53 and should lead to strong trade-offs with 458 

wood density in dry regions52. For the former, we selected all plots with both angiosperms 459 

and gymnosperms (n = 249,354, “mixed forests”) and compared simple linear regression 460 

estimates of community-weighted wood density against temperature within each plant 461 

group and across groups. For the latter, we matched diameter measurements to a list of 462 

succulents compiled from the literature78–81 and compared regression estimates of 463 

community-weighted wood density against site water balance both within each life form 464 

and across life forms. The full list of succulent species with wood density records in the 465 

GWDD v.2 can be found in Table S8.  We did not distinguish between different types of 466 

succulence, and defined succulents broadly as woody or wood-like plants with any type 467 

of succulent habit. 468 

 469 

Comparison with wood density maps 470 

Finally, we compared the global wood density map to other products. First, we compared 471 

it to a map created only from wood density records in the previous version of the GWDD32. 472 

We compared both maps in terms of overall uncertainty and assessed regional biases due 473 

to lower species coverage and outdated conversion factors18. Second, we compared it to 474 

three published maps11–13. Although two of these maps did not weight wood density by 475 
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tree size (basal area or volume), their estimates were explicitly aimed at representing 476 

communities in terms of species dominance and carbon stocks12,13, and should thus be 477 

comparable with the community-weighted means used in this study. We resampled all 478 

three maps to the same 1 km x 1 km Mollweide grid, then evaluated them in terms of 479 

overall wood density distribution and against the same 1,000 spatially stratified 480 

validation plots. We assessed correlations with the reference map via R2, and predictive 481 

performance on validation plots via root mean square errors (RMSE) and R2. The latter 482 

were compared to the RMSE and R2 of the reference map under basic leave-one-out cross 483 

validation (ratio of variances). Third, we assessed the ability of our reference map and the 484 

three published maps to predict a known wood density gradient across Amazonian 485 

rainforests10. We compared RMSEs and R2 across plots from the global validation dataset 486 

(Fig. 1d), but located within Amazonia (n = 152), and also compared predictions from this 487 

study against a recently produced regional map 15 (Fig. S11).    488 
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