The text that follows is a PREPRINT. O texto que segue é um PREPRINT.

Please cite as: Favor citar como:

Goebel, L.G.A., M.H. Vancine, J.A. Bogoni, G.R. Longo, M.A.L. Calicis, P.M. Fearnside, A.F. Palmeirim &
M. dos Santos-Filho. 2025. The impact of Amazon deforestation is magnified by changing the configuration of forest cover.

Environmental Conservation. https://doi.org/10.1017/S0376892925000086

DOI: 10.1017/S0376892925000086

ISSN: 0376-8929

Copyright: Cambridge University Press

The original publication is available at O trabalho original está disponível em:

https://doi.org/10.1017/S0376892925000086

Deforestation on an Amazonian frontier magnifies impact by changing the configuration of forest cover

- 3
- 4 Luan Gabriel Araujo Goebel¹, Maurício Humberto Vancine², Juliano A. Bogoni¹,
- 5 Gabriela Rodrigues Longo³, Mathilde Calicis⁴, Philip M. Fearnside⁵, Ana Filipa
- 6 Palmeirim⁶, Manoel dos Santos-Filho¹
- 7
 8 ¹ Center for Research on Limnology, Biodiversity, and Ethnoecology; Laboratory of
- 9 Mastozoology; Graduate Program of Environmental Science, University of Mato
- 10 Grosso State (Unemat), Cáceres, Mato Grosso, 78200-000, Brazil
- ² Universidade Estadual Paulista (Unesp), Instituto de Biociências, Departamento de
- Biodiversidade, Laboratório de Ecologia Espacial e Conservação, Rio Claro, São Paulo,
 13506-900, Brazil
- 14 ³ Programa de Pós-graduação em Ensino de Ciências, Universidade Federal do Mato
- 15 Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, 79070-900, Brazil
- ⁴ Université de Liège, Gembloux Agro-Bio Tech, Terra Teaching and Research Centre,
- 17 Forest is Life, Tropical Forestry, Gembloux, B-5030, Belgium
- ⁵ Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, 69067-375,
 Brazil
- 20 ⁶ Laboratório de Ecologia e Zoologia de Vertebrados, Instituto de Ciências Biológicas,
- 21 Universidade Federal do Pará, 66075-110, Brazil
- 22 * E-mail: lg.goebel@gmail.com (corresponding author)
- 23 ORCIDs: LGAG: 0000-0002-1320-2184; MHV: 0000-0001-9650-7575; JAB: 0000-
- 24 0002-8541-0556; GRL: 0000-0003-4544-437X; MC: 0009-0007-2717-3402; PMF:
- 25 0000-0003-3672-9082; AFP: 0000-0003-3931-0578; MSF: 0000-0002-9784-7114

26

Amazon deforestation magnifies its impact by changing the configuration of forest cover

29

30 Summary

The Amazon comprises the most biodiverse region in the world but, despite being 31 highly threatened by human-induced environmental changes, little is known about how 32 33 those changes influence the remaining forest's extent and configuration in Brazil's arc 34 of deforestation. We analysed the spatial and temporal dynamics and the configuration of forest cover in Brazil's state of Rondônia over 34 years. We calculated seven 35 36 landscape metrics based on freely available satellite imagery to understand the habitat 37 transformations. Overall, native vegetation cover declined from 90.9% to 62.7% 38 between 1986 and 2020, and fragmentation greatly increased, generating 78,000 forest 39 fragments and 100,000 fragments of "native vegetation", which also includes forest. We 40 found that c. 50% of the vegetation is within c. 1 km of the nearest forest edge and the 41 mean isolation between fragments is c. 2.5 km. More than 50% of the fragments are >10 42 km away from the nearest PA or IT. This reduction of natural vegetation in Rondônia is 43 posing major threats to the survival of species and is undermining the dynamics of 44 ecosystems. Measures to control deforestation and avoid the reduction of large remnants

- 45 are urgently needed.
- 46
- 47 Keywords: MapBiomas, connectivity, forest fragmentation, Rondônia, Brazil
- 48

49

50 Introduction

51 The Amazon holds the largest and most biodiverse tropical forest in the world 52 (Raven et al. 2020), providing essential ecosystem services that include contributing to global climate balance (Pires et al. 2023). Despite its importance, this forest has been 53 54 increasingly threatened over the last 40 years by deforestation and consequent forest 55 fragmentation, as well as by other human pressures such as forest degradation (Lapola 56 et al. 2023). As of 2023, more than 21% of Brazil's Amazon forest had been cleared (INPE 2022). The expansion of anthropogenic activities has destroyed a vast area of 57 forest, especially along the region's southern and eastern edges, known as the "arc of 58 59 deforestation", covering all or part of the Brazilian states of Pará, Mato Grosso, Acre, 60 Maranhão and Rondônia (IPAM 2023). The arc of deforestation is characterized by a vast array of variable-sized forest fragments, mostly isolated within cattle pastures and 61 62 agricultural croplands (Fearnside 2005). Due to unprecedented deforestation rates in the 63 Amazon — widely recognized as the principal driver of biological depletion — 64 measures based on scientific evidence are necessary for effective conservation actions 65 (e.g., Bogoni et al. 2020).

66 Despite empirical evidence of the consequences of deforestation and 67 fragmentation of Amazonian habitats, deforestation in Rondônia is rampant (Chaves et 68 al. 2024). This state has a unique history of colonization and settlement projects (Gomes 69 et al. 2012), rubber cycles, and infrastructure projects (e.g., the Madeira-Mamoré 70 railway and the BR-364 and BR-319 highways). The impacts of this history include 71 depletion of biodiversity in the state's unique tropical ecoregions, including hyper-72 diverse areas such as the Rondônia endemism zone (Borges and da Silva 2012, Marsh et 73 al. 2022). Rapid land-use change in the state necessitates the application of robust 74 ecological metrics to assess the intensity, extent, and magnitude of natural-habitat conversion and allow analysis of the effects of these changes. Especially in a scenario 75

where multifaceted vertebrate declines are observed (Goebel et al. 2025), these metricsare essential to analyse the effects of these changes and define conservation strategies.

78 Understanding the vegetation cover dynamics and configuration over time is 79 necessary to infer the degree of threat, and these are measurable using landscape ecology metrics (e.g., Vancine et al. 2024). These metrics allow comparison of 80 81 landscapes with different territorial extents and in different periods. Deforestation and 82 fragmentation induce significant changes in the composition and configuration of the 83 landscape, that is, changes in the physical structure and spatial organization of ecosystems, which constrain populations and ecosystem services (Melo et al. 2013). 84 85 Native Amazonian ecosystems have been giving way to anthropogenic habitats, causing simplification in species diversity as fragmentation intensifies, with the remaining 86 87 fragments becoming smaller, affecting species richness and abundance (Palmeirim et al. 2020, Goebel et al. 2025), while increased isolation limits movement patterns and 88 89 affects species distributions (Fahrig 2003, 2017). The forest fragments are subject to 90 edge effects that alter vegetation structure, reducing food resources and increasing vulnerability to forest fires (Malcolm 1994). Fragmentation also promotes interference 91 with ecosystem functions such as pollination and seed dispersal, degrading the integrity 92 93 of forest environments (Galetti et al. 2003, Laurance et al. 2018, Pires et al. 2023). 94 There are also cumulative impacts that include invasions of alien species (Young et al. 95 2016), disease outbreaks, and increased competition between species (Palmeirim et al. 96 2020).

97 We analysed spatial and temporal changes in vegetation cover and 98 configuration in Rondônia between 1986 and 2020, employing annual satellite images 99 on a five-year basis. We calculated landscape metrics, including vegetation cover, 100 fragment size, number of fragments, edge area, mean isolation, functional connectivity, and vegetation overlap and distances from protected areas (PAs, which are known as 101 102 "conservation units" in Brazil) and Indigenous territories (ITs) (similar to Vancine et al 103 2024). We expected that, over time, the metrics would respond to the fragmentation 104 context of Rondônia, showing a reduction in vegetation cover and connectivity, and an 105 increase in the number of fragments, edge area, and mean isolation, but a habitat 106 conservation in PAs and ITs (Vancine et al. 2024). We provide insights into habitat 107 fragmentation with a view to improving conservation policies and an analytical 108 framework that could be replicated in other tropical regions, as well as foster 109 international collaborations.

110

111 Methods

112 Study Area

113 Our study area was Rondônia (in the southwestern Brazilian Amazon), to which many people from non-Amazonian parts of Brazil migrated in the 1970s and 114 115 1980s, after the construction and paving of the BR-364 highway and implementation of colonization and settlement projects supported by the Brazilian Federal Government 116 117 (Fearnside 1987). Rondônia (7-13°S, 59-66°W) covers an area of 237,765 km² (IBGE 118 2023), or 4.6% of Brazil's Legal Amazon region. It currently has 52 municipalities 119 (counties) and, with c. 1,580,000 inhabitants, is the fourth most populous of the nine states in the Legal Amazon (IBGE 2023). However, its human development index 120 (0.690) is ranked seventh in the Legal Amazon and eighteenth among Brazil's 27 states 121 122 (IBGE 2023). Rondônia has the fifth largest gross domestic product in the Legal Amazon and is 22nd in the country, with an economy based on agriculture, livestock, 123 food industry, and extractive activities (IBGE 2023). 124

125 The predominant vegetation is Amazonian open and dense tropical forests, but

126 in roughly 10% of the state the original vegetation is savannas such as cerrado or other

127 non-forest Formations (Fearnside 1997). Rondônia's main water courses are the

128 Madeira, the Machado (or Ji-Paraná) and the Guaporé Rivers (Gomes 2012).

129 Biodiversity in Rondônia is composed of 1,724 known plant species, 118 snakes

(Bernarde et al. 2012), 802 birds, 147 amphibians, and 211 mammals (Marsh et al.2022).

132

133 Land use and land cover dataset and classification

134 Our assessments of vegetation cover dynamics and landscape structure were 135 based on the classification of land use and land cover (LULC) provided by the opensource MapBiomas project (Souza Jr. et al. 2020). We used a 34-year series of changes 136 137 in LULCbetween 1986 and 2020 using images every five years, following Vancine et al. (2024): 1986, 1990, 1995, 2000, 2005, 2010, 2015, and 2020. The classification is 138 139 from MapBiomas Collection 7.1 in Raster format (GeoTIFF) with a spatial resolution of 140 30 m and Datum WGS-84 in the Universal Transverse Mercator (UTM) coordinate 141 system. We defined two vegetation classes for the analyses: 'forest vegetation' (FV) and 'native vegetation' (NV), which also includes forest (Table S1). In FV we only 142 143 considered habitats classified by MapBiomas as 'forest', while NV includes both 'forest' and non-forest formations: 'savannas', 'wetlands', 'grasslands' and 'other types 144 145 of natural vegetation'.

Vectorial data for protected areas and Indigenous territories, as well as 146 147 geospatial data on roads and the geographical limits of Rondônia, were obtained from the Brazilian Institute of Geography and Statistics platform (IBGE 2021). We selected 148 only roads that were built, paved, and in operation. Data on roads were used to exclude 149 150 areas of FV and NV overlapping these constructions and thus prevent overestimation of the areas of vegetation (Antongiovanni et al. 2018, Vancine et al. 2024). Using the 151 152 roads dataset, we tested the effect of these constructions on deforestation, considering 153 that these roads allow access to previously inaccessible areas (Barber et al. 2014). All 154 datasets were rasterized with a resolution of 30 m and reprojected to UTM Zone 20S, and Datum SIRGAS2000. The roads were rasterized using a parameter that creates 155 156 "densified lines", meaning that all cells touched by the line will be defined as part of the 157 path (Vancine et al. 2024).

158

159 Metrics used in spatial and temporal analyses

160 All maps were built in QGIS 3.22 LTR software (QGIS Development Team 2023) using Natural Earth delimitations (1:10,000,000). All landscape metrics were 161 162 processed using GRASS GIS 8.2.1 (Neteler et al. 2012) and R 4.3.0 (R Core Team 2023) via the rgrass (Bivand 2022) and LSMetrics packages in R (Niebuhr et al. pers. 163 comm. 2025). We calculated seven landscape metrics: vegetation cover, number of 164 165 fragments, mean fragment size, edge area, mean isolation, functional connectivity, and vegetation overlap and distance from PAs and ITs (Table S1. The vegetation cover was 166 167 calculated as the amount of vegetation (FV, NV and each vegetation forest and natural 168 classes (see in Table S2) divided by the total area of Rondônia. The number and size of 169 fragments allowed us to account for the area of the remaining fragments, in addition to examining the increase, reduction, or stability of these areas throughout the landscape. 170 We also summarized the fragment size data by calculating their means per year (i.e., 171 172 arithmetic mean). The fragments were defined using the "rule of eight neighbours", 173 which can define areas connected by pixels in eight directions (Turner and Gardner 2015). The edge area was calculated for different depths (Table S2), allowing us to 174 175 estimate the amount and percentage of forest area subject to edge effects.

176 We used two functional connectivity metrics for different gap-crossing distances, which calculate the capabilities of species to cross non-natural habitats (Table 177 178 S2). First, we calculated the sum of the areas of all fragments closer than the rangecrossing distance, which we considered to be the available functional area (Awade and 179 Metzger 2008) or the amount of functional habitat (i.e., suitable and well-connected 180 181 habitat) (van Moorter et al. 2023). Second, we calculated the mean cluster size (i.e., 182 arithmetic mean assumed to represent the expected size), and compared it with the largest cluster size in the study region (Vancine et al. 2024). In the isolation metric, we 183 184 used an index adapted from the 'empty space function' developed by Ribeiro et al. 185 (2009) and Vancine et al. (2024), and we created a Euclidean-distance map of all fragments, from which all distance values were extracted, and the mean isolation 186 187 distance (i.e., the arithmetic mean) was calculated. This process was repeated in several steps for the different size classes (Table S2 and Table S3). Mean isolation provides 188 189 insights into the importance of fragments as "steppingstones". We also calculated the 190 amount of FV and NV that overlap with protected areas (Pas in 2022) and indigenous 191 territories (ITs in 2021), and the shortest Euclidean distance from each FV and NV pixel to these areas.(Tables S1 and S2). We analysed vegetation scenarios considering only 192 193 trimmed scenarios, where the area occupied by roads was removed ("trimmed") from 194 the forest area. The scenarios were 'forest vegetation with roads trimmed' and 'native 195 vegetation with roads trimmed'. . Scenarios in which the roads were not trimmed did not yield a difference from that in our analyses, although an effect of including areas 196 197 occupied by roads has been found in other Brazilian ecosystems such as the Atlantic 198 Forest (Vancine et al. 2024) and Caatinga (Antongiovanni et al. 2018).

199

200 Results

201 Vegetation cover

Vegetation cover in Rondônia decreased over the 34 years from 1986 to 2020
(Figure 1) from 85.34% (20.3 Mha) to 57.1% (13.6 Mha) for FV, while NV decreased
from 91% (21.6 Mha) to 62.7% (14.9 Mha) (Figure 2, Tables S3 and S4). Savannas,
grasslands, and wetlands contributed significantly to the composition of NV (Figure 2).
Over the 34-year period there was a 0.19% reduction in savanna formations. Compared
to 1986, the area of wetlands in 2015 had increased by 0.15% and in 2020 it had
decreased by 0.12%, while grasslands had increased by 0.10% (Figure 2).

209

210 Distribution, size, and number of forest and native habitat fragments

211 The number of fragments increased over the years (Figure 3). Considering all 212 native vegetation classes over the 1986-2020 period there were 100,874 fragments, of which 77,730 had forest-only vegetation cover (Figure 3a). In 1990, the number of NV 213 and FV fragments was nearly equal, with 32,440 and 29,316 respectively, but by 1995 214 215 the number of NV fragments had grown to 52,889. The mean size of fragments fell sharply between 1990 and 1995, with a drop of 42.2% (671.5 to 388.3 Mha) for FV, and 216 217 42.6% (646.2 to 370.9 Mha) for NV. In 2020, the mean size of FV and NV fragments 218 was around 150 ha (mean \pm SD = 154 \pm 226 ha) (Figure 3b, Tables S3 and S4).

We observed a reduction in the size of the fragments of FV and NV over the 1986-2020 period for all years and scenarios (Figure S1 and Table S4), mainly in vegetation fragments larger than 1,000,000 ha, the total area of which decreased by 24% for FV and 22% for NV. For fragments of 2,500-1,000,000 ha range there was little variation in the total number. There was an increase in the number of fragments in the 1-2,500 ha range but there was a decrease in the number of fragments smaller than 1 ha (Figure S1).

226

227 Core and edge areas

228 The percentage of all FV and NV that was less than 1,020 m from an edge increased over the 34 years, from 50% to 52% for FV, and 35% to 50% for NV (Figure 229 4[a-b]). The percentage of areas less than 500 m from an edge also increased, from 230 231 33.4% to 40.6% for FV, and 24.7% to 34.6% for NV. The percentage of area less than 232 2,520 m from an edge remained at 75% for FV and increased from 65% to 75% for NV. The maximum edge distances were 23,353 m for FV and 26,281 m for NV, showing 233 that NV had larger central areas (Figure 4[a-b]). For distances over 240 m from an edge 234 235 there was an inversion of the trend in the percentages of vegetation: the percentages of vegetation in FV and NV decreased over the years as a result of the conversion of the 236 237 core areas of the fragments into edge areas (Figure 4[c-d]). 238

239 Functional connectivity

240 We found that the mean functionally connected area also declined over the 241 years. Considering functional connectivity for species that cannot cross non-habitat (i.e., gap crossing equals 0 m), the mean functionally connected area of FV decreased by 242 243 78.6% (816.2 to 174.3 ha), and for NV by 82.7% (860.0 to 147.6 ha) (Figure 5[a-b]). 244 The same pattern occurs for all gap-crossing classes. For values above 1,200 m, 245 connectivity showed an increase in 2015; however, it had declined by 2020. In the 1,200 and 1,500-m gap-crossing classes, NV was greater in 2010 but by 2020 it had dropped 246 247 dramatically in the 1,500-m class (Figure 5). Above 600 m the largest cluster size did not change, showing a limit value for functional connectivity in Rondônia for all years 248 analysed (Figure 5 [c-d]). 249

251 Mean isolation

252 Mean isolation occurred across all size classes of the remaining fragments 253 (Figure 6[a-b]). There were peaks in 2005 and 2020 for both FV and NV, reaching the 254 highest values in the historical series in 2020, with mean isolation between fragments of c. 2.5 km (Figure 6). The 500-ha class had the highest mean isolation, followed by the 255 256 350 and 250-ha classes. In 2020, the 500-ha fragments had a mean isolation of 2,647 m for FV and 2,341 m for NV. For FV and NV, we observed increases in mean isolation 257 258 for areas from 200 to 500 ha in 2000, a reduction in 2005 and 2010 (except for the 500ha class), and a large increase in 2020. 259

260 261

250

Distance from Protected Areas and Indigenous Territories

262 PAs covered 328,026,915 ha (13.8%) and ITs 486,647 ha (20.5%) of Rondônia in 2020 these areas represented, respectively, 20.4% and 21.8% of the total FV and NV 263 in PAs, and 33.6% and 32.2% of the total FV and NV in ITs. Our results indicate that 264 265 2.7 Mha (20.4%) of FV and 3.2 Mha (21.8%) of remaining NV was in PAs (Figure 7[ab]), while for FV 4.5 Mha (33.6%) was in PAs and 4.7 Mha (32.2%) was in ITs. Only 266 1.9% of the FV and NV outside of PAs and ITs was within 1 km of a PA, and 1.6% of 267 268 the FV and NV outside of PAs and ITs was within 1 km of an IT (Figure 6). In contrast, 269 63.2% of FV and 61.4% of NV were more than 10 km from PAs, and 53.1% of FV and 270 54.3% NV were more than 10 km from ITs (Figure 6). 271

272 Discussion

Our results show dramatic changes in the spatial and temporal dynamics of
landscape structure in Rondônia. Over a period of 34 years there was a huge reduction
in native vegetation cover (from 21.6 Mha to 14.9 Mha), mainly due to agriculture and

ranching expansion and urban growth (Souza Jr. et al. 2020). Fragmentation also greatly
increased, totalling more than 70,000 fragments of FV and 90,000 fragments of NV.
Fragments are progressively decreasing in size (with a mean size reduced to 150 ha by
2020), contributing edge effects and isolation from other fragments or protected areas
and Indigenous territories.

281 We observed a clear increase in smaller fragments and reduction in large 282 remnants in the state, which can have a direct impact on maintaining the diversity and population size of multiple taxonomic groups, as has been found in other studies of 283 Amazonian fragments (Laurance et al. 2018, Palmeirim et al. 2022, Goebel et al. 2025). 284 285 Fragments with larger areas tend to shelter more species and provide more ecosystem functions, which ensure human well-being and agricultural productivity (Pires et al. 286 287 2023). As predicted by Piontekowski et al. (2019), there was a major decrease in Rondônia's vegetation cover and increase the number of fragments. A similar pattern 288 289 has been found in the Tapajós basin in the states of Pará and Mato Grosso (Borges et al. 290 2022). Although the number of fragments has increased continuously in Rondônia, there was a reduction in the rate of increase between 2005 and 2010 (Figure 3), coinciding 291 with the creation of the Action Plan for the Prevention and Control of Deforestation in 292 293 the Amazon (PPCDAM) in 2004 (MMA 2011), as well as other factors that reduced the rate of deforestation during that period (Fearnside 2017, West and Fearnside 2021). 294

295 In addition to effects related to the amount of habitat, from 2010 onwards there was an increase in isolation and loss of connectivity between the remaining fragment of 296 297 vegetation. The degree of isolation limits the species colonization process (Palmeirim et al. 2020) and interferes with small fragments acting as steppingstones that connect 298 smaller areas with large remnants and thereby maintain genetic flow (Pires et al. 2023). 299 300 Edge effects have also increased, which causes deleterious changes in vegetation structure, food webs, microclimate, and the carbon cycle (Benchimol and Peres 2015). 301 302 Fragmentation, as measured by metrics such as ours, generates persistent deleterious 303 effects (Haddad et al. 2015); species composition changes, with a boom in generalist 304 species (Palmeirim et al. 2020).

305 Between 2012 and 2015, large infrastructure projects were implemented in 306 Rondônia (e.g., road networks and hydroelectric dams), causing a negative effect on landscapes due to greater deforestation and fragmentation rates (Cabral et al. 2018, 307 308 Escada et al. 2013). Roads play a crucial role in this process, exacerbating the extent 309 and rate of deforestation (Laurance et al. 2009); in the Amazon they facilitate access to 310 previously inaccessible forest areas, allowing agricultural expansion, illegal logging, 311 mining, and urban development (Laurance et al. 2009, 2015, Barber et al. 2014, 312 Fearnside 2022). Roads contribute to soil erosion, changes in drainage patterns, and 313 increased risk of forest fires, further amplifying the harmful effects on ecosystems (Laurance et al. 2015). Understanding the role of roads in the deforestation process is 314 315 crucial to developing strategies for conservation in the Amazon.

As a result of the deforestation and fragmentation in Rondônia, the largest 316 317 vegetation remnants are now located in PAs and ITs (Figure 1), and 63% of the 318 remaining vegetation outside of PAs and ITs is more than 10 km from the nearest PA or 319 IT. Because deforestation outside PAs and ITs is overwhelming, these areas are 320 essential for biodiversity conservation in the Amazon (Qin et al. 2023). PA and IT creation is one of the most important mechanisms for slowing biodiversity loss and 321 322 maintaining ecological functions and ecosystem services (Godet and Devictor 2018, 323 Gatagon-Suruí et al. 2024). The isolation of PAs reduces the likelihood of species colonizing or recolonizing other fragments and leads to population declines, reducing 324 325 the species' reproductive potentials and genetic flows (Estrada et al. 2022). As a cascade effect, population decline can affect forest dynamics, by reducing seed dispersal
(Magioli et al. 2021). Food resources that are essential for Indigenous people and other
traditional groups for population growth and cultural development may suffer declines
in abundance and biomass, which can have critical consequences for subsistence (Flores
et al. 2024).

331 PAs are responsible for reducing deforestation, degradation, and carbon 332 emissions, compared to non-protected areas (Sze et al. 2022). They are effective for connecting smaller unprotected fragments, generally in private properties (Noss et al. 333 2012). Based on our results, we suggest that new PAs need to be created, in addition to 334 335 preventing damaging human actions with efficient inspections and resources applied to 336 environmental protection. Although these areas play a vital role in Rondônia, over the 337 2020-2023 period, the state government's policies were focused on reducing or extinguishing state-protected areas (e.g., Fearnside and Cruz 2018). Forestry policies 338 339 were also weakened (Moreira et al. 2022). Environmental damage from these policies 340 contributes to ongoing climate change, including a lengthening dry season in the 341 southern and southwestern Amazon (Butt et al. 2011, Costa and Pires 2010, Fu et al. 2013, Leite-Filho et al. 2020), which threatens agricultural activities (Costa et al. 2019, 342 343 Fearnside 2020, Leite-Filho et al. 2021). Increasing frequency of extreme events in this 344 region, also linked to deforestation and global warming, adds to this threat (da Silva et 345 al. 2023).

346 Our chrono-sequence of deforestation and fragmentation in Rondônia indicates 347 effects on fauna and flora that are still poorly investigated through on-site research, reflecting deficiencies in biodiversity knowledge (Bogoni et al. 2022). Effects related to 348 health and well-being may be enhanced, as Rondônia has a high risk of emerging 349 350 zoonotic diseases due to anthropogenic pressures and social vulnerability (Ellwanger et al. 2020, 2022). This highlights the complexity and interconnectedness of 351 352 environmental phenomena that influence ecosystems and the need for understanding 353 this complexity.

354 Our findings, based on landscape metrics of spatial and temporal changes in the landscape over three decades, should inform Brazilian government policies to 355 356 reduce and control deforestation in the Amazon. The changes in Rondônia's landscape are like those found in the Atlantic Forest, which has an even greater degree of isolation 357 358 between the fragments (Amaral et al. 2025, Vancine et al. 2024). However, the Atlantic Forest has a history of degradation over more than 500 years, while the changes in 359 360 Rondônia are a mere 50 years old (Fearnside 1989). Our information and interpretations should be used as a guide for developing public policies before Rondônia's landscapes 361 362 reach a point of no return. Our results help understanding of the causes and consequences of landscape change, which can generate crucial information for 363 compensating environmental services (Qin et al. 2023). The implementation of 364 365 appropriate laws would help counter the pressure to reduce the number and size of protected areas and Indigenous territories, and favour the implementation of 366 conservation projects, including ecological corridors. Such actions might be financed, 367 368 for example by the Amazon Fund (https://www.amazonfund.gov.br/en/home/). Natural 369 vegetation has greater value than deforested areas but redirecting the course of development towards more sustainable actions requires strong measures to prevent 370 unsustainable development (Fearnside 2018); otherwise, the outlook in the Amazon will 371 372 be increasingly bleak.

373

374 Conclusions

375

Our understanding of the dynamics of deforestation and consequent

fragmentation in Rondônia reveals drastic reductions in forest cover, size of forest
fragment, and connectivity between natural areas. There has been increase in the
number of fragments, in the area exposed to edge effects and in the isolation of
fragments, which affects protected areas and indigenous territories. We warn that these
environmental impacts on a landscape scale have severe ecological and socioeconomic
consequences, especially for traditional and Indigenous peoples. We emphasize the
urgency of conservation and restoration actions.

Greater investment is needed in inspection technology and in on-the-ground 383 control actions, especially close to highways, which are key drivers of deforestation. It 384 385 is paramount to promote connectivity between small fragments and large areas, planning the management of a landscape matrix to minimize edge effects and improve 386 the connectivity of natural areas. We contribute to the evidence base for conservation 387 policies in Rondônia and other Amazonian states. It is urgent to stop the political attacks 388 389 that aim to reduce and weaken the existing protected-area network. We reinforce the 390 appeal to create new protected areas and for more efficient supervision in natural areas 391 and to defend fragments in private properties against the expansion of agribusiness frontiers throughout the Amazon. The landscape metrics and interpretation methods we 392 393 used can be applied to any biogeographic region, giving this study the potential to 394 positively influence practices and policies on a global scale.

396 Supplementary material. To view supplementary material for this article, please visit397 the link available at.

398

395

Acknowledgments. We thank the postgraduate program in Environmental Sciences at
UNEMAT (Cáceres campus), Coordination for the Improvement of Higher Education
Personnel (CAPES), São Paulo Research Foundation (FAPESP), and we thank the
MapBiomas project for providing land-use data.

403

Author contributions. LGAG: conceptualization, methodology, data curation,
 investigation, formal analysis, writing – original draft, writing – review & editing,

- 406 project administration. MHV: conceptualization, methodology, data curation,
- 407 investigation, formal analysis, validation, supervision, writing review & editing, JAB:
- 408 investigation, validation, supervision, writing review & editing. GRL:
- 409 conceptualization, investigation, validation, writing review & editing. MC:
- 410 conceptualization, investigation, validation, writing review & editing. PMF:
- 411 validation, supervision, writing review & editing. AFP: conceptualization,
- 412 investigation, validation, supervision, writing review & editing. MSF: validation,
- 413 supervision, writing review & editing.
- 414

Financial support. This work was supported by the Coordination for the Improvement
of Higher Education Personnel (CAPES) with grants granted to LGAG (Postgraduate in
the Legal Amazonia), and GRL. MHV was supported by grants #2022/01899-6, São

- 418 Paulo Research Foundation (FAPESP). PMF thanks the National Council for Scientific
- 419 and Technological Development (CNPq 311103/2015-4; 406941/2022-0), Rede Clima
- 420 (FINEP/Rede Clima 01.13.0353-00), and the National Institute for Research in
- 421 Amazonia (INPA) (PRJ15.125).
- **422 Data availability** Data will be made available on request.
- 423424 Competing interests. The authors declare none.
- 425

426 427	Ethical standard. Compliant.
428	
429	References
430	Amaral S, Metzger JP, Rosa M, Adorno BV, Gonçalves GC, Pinto LFG (2025)
431	Alarming patterns of mature forest loss in the Brazilian Atlantic Forest. <i>Nature</i>
432	Sustainability <u>https://doi.org/10.1038/s41893-025-01508-w</u>
433	Antongiovanni M, Venticinque EM, Fonseca CR (2018) Fragmentation patterns of the
434	Caatinga drylands. <i>Landscape Ecology</i> 33: 1353–1367.
435	https://doi.org/10.1007/s10980-018-0672-6
436	Awade M, Metzger JP (2008) Using gap-crossing capacity to evaluate functional
437	connectivity of two Atlantic rainforest birds and their response to fragmentation.
438	Austral Ecology 33(7): 863–871. <u>https://doi.org/10.1111/j.1442-9993.2008.01857.x</u>
439	Barber CP, Cochrane MA, Souza Jr CM, Laurance WF (2014) Roads, deforestation, and
440	the mitigating effect of protected areas in the Amazon. Biological Conservation
441	177: 203-209. https://doi.org/10.1016/j.biocon.2014.07.004
442	Benchimol M, Peres CA (2015) Predicting local extinctions of Amazonian vertebrates
443	in forest islands created by a mega dam. <i>Biological Conservation</i> 187:61-72.
444	https://doi.org/10.1016/j.biocon.2015.04.005
445	Bernarde PS, Albuquerque SD, Barros TO, Turci LCB (2012) Serpentes do estado de
446	Rondônia, Brasil. Biota Neotropica 12(3): 154-182. https://doi.org/10.1590/S1676-
447	06032012000300018
448	Bivand R (2022) rgrass: Interface Between 'GRASS' Geographical Information System
449	and 'R'. R package version 0.3-6. https://rdrr.io/rforge/rgrass7/man/rgrass.html
450	Bogoni JA, Peres CA, Ferraz KMPMB (2020) Extent, intensity and drivers of mammal
451	defaunation: a continental-scale analysis across the Neotropics. Scientific Reports
452	10: 1-16. https://doi.org/10.1038/s41598-020-72010-w
453	Bogoni JA, Peres CA, Ferraz KMPMB (2022) Medium-to-large-bodied mammal
454	surveys across the Neotropics are heavily biased against the most faunally intact
455	assemblages. Mammal Review 52(2): 221-235. https://doi.org/10.1111/mam.12274
456	Borges SH, da Silva JM (2012) A new area of endemism for Amazonian birds in the
457	Rio Negro Basin. The Wilson Journal of Ornithology 124(1): 15-23.
458	https://doi.org/10.1676/07-103.1
459	Borges GA, Mancilla G, Siqueira AB, Vancine MH, Ribeiro MC, de Souza Maia JC
460	(2022) The fate of vegetation remnants in the southern Amazon's largest threatened
461	hotspot: part (I) a 33-year analysis of LULCC in the Tapajos River basin, Brazil.
462	Research, Society and Development 11(10): e448111032553.
463	https://doi.org/10.33448/rsd-v11i10.32553
464	Butt N, de Oliveira PA, Costa MH (2011) Evidence that deforestation affects the onset
465	of the rainy season in Rondonia, Brazil. Journal of Geophysical Research 116:
466	D11120. https://doi.org/10.1029/2010JD015174
467	Cabral AI, Saito C, Pereira H, Lagues AE (2018) Deforestation pattern dynamics in
468	protected areas of the Brazilian Legal Amazon using remote sensing data. Applied
469	<i>Geography</i> 100: 101-115. https://doi.org/10.1016/j.apgeog.2018.10.003
470	Chaves ME, Mataveli G, Conceição KV, Adami M, Petrone FG, Sanches ID (2024)
471	AMACRO: the newer Amazonia deforestation hotspot and a potential setback for
472	Brazilian agriculture. <i>Perspectives in Ecology and Conservation</i> 22(1): 93-100.
473	https://doi.org/10.1016/j.pecon.2024.01.009
474	Costa MH, Pires GF (2010) Effects of Amazon and central Brazil deforestation
475	scenarios on the duration of the dry season in the arc of deforestation. International

476 477	Journal of Climatology 30: 1970–1979. <u>https://doi.org/10.1002/joc.2048</u>
411	D Direc CE Dougo D Soores Eilho DS (2010) Climate risks to Amozon agriculture
470	D, Flies OF, Fousa K, Sodies-Flino DS (2019) Chillate fisks to Allazon agriculture
479	Environment 17: 584 500, https://doi.org/10.1002/fee.2124
400	La Silva SC, Drawn F, Samaria AO, Silva AI C, das Santas NCDS, Lina AC, Aswing
401	da Silva SS, Brown F, Sampaio AO, Silva ALC, dos Santos NCRS, Linia AC, Aquino
482	AMIS, SIIVA PHC, Moreira JG, Soares I, Costa AA, Fearnside PM (2023) Amazon
483	climate extremes: increasing droughts and floods in Brazil's state of Acre.
484	Perspectives in Ecology and Conservation 21: 311-317.
485	$\frac{\text{https://doi.org/10.1016/j.pecon.2023.10.006}}{\text{LL}}$
486	Ellwanger JH, Kulmann-Leal B, Kaminski VL, Valverde-Villegas JM, Veiga BG,
487	Spilki FR, Fearnside PM, Caesar L, Giatti LL, Wallau GL, Almeida SEM, Borba
488	MR, Hora VP, Chies AB (2020) Beyond diversity loss and climate change: Impacts
489	of Amazon deforestation on infectious diseases and public health. Annals of the
490	Brazilian Academy of Sciences 92(1): e20191375. https://doi.org/10.1590/0001-
491	<u>3765202020191375</u>
492	Ellwanger JH, Fearnside PM, Ziliotto M, Valverde-Villegas JM, Veiga ABG, Vieira
493	GF, Bach E, Cardoso JC, Müller NFD, Lopes G, Caesar L, Kulmann-Leal B,
494	Kaminski VL, Silveira ES, Spilki FR, Weber MN, Almeida SEM, Hora VP, Chies
495	JA (2022) Synthesizing the connections between environmental disturbances and
496	zoonotic spillover. Annals of the Brazilian Academy of Sciences 94(3): e20211530.
497	https://doi.org/10.1590/0001-3765202220211530
498	Escada, MIS, Maurano LE, da Silva JHG (2013) Dinâmica do desmatamento na área de
499	influência das usinas hidroelétricas do complexo do rio Madeira, RO. pp. 7499-
500	7507. In: J.R. dos Santos (ed.) XVI Simpósio Brasileiro de Sensoriamento Remoto,
501	Foz do Iguaçu, Brasil 2013. São José dos Campos, SP, Brazil: Instituto Nacional de
502	Pesquisas Espaciais (INPE). http://www.dsr.inpe.br/sbsr2013/files/p0551.pdf
503	Estrada A, Garber PA, Gouveia S et al. (2022) Global importance of Indigenous
504	Peoples, their lands, and knowledge systems for saving the world's primates from
505	extinction. Science Advances 8(32): eabn2927.
506	https://doi.org/10.1126/sciadv.abn2927
507	Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annual Review of
508	Ecology, Evolution, And Systematics 34: 487–515.
509	https://doi.org/10.1146/annurev.ecolsys.34.011802.132419
510	Fahrig L (2017) Ecological responses to habitat fragmentation per se. Annual Review of
511	Ecology, Evolution, and Systematics 48: 1–23. https://doi.org/10.1146/annurev-
512	ecolsys-110316-022612
513	Fearnside PM (1987) Deforestation and international economic development projects in
514	Brazilian Amazonia. Conservation Biology 1: 214-221.
515	https://doi.org/10.1111/i.1523-1739.1987.tb00035.x
516	Fearnside PM (1989) Ocupação Humana de Rondônia: Impactos, Limites e
517	<i>Planejamento</i> . Brasília, DF. Brazil: Conselho Nacional de Desenvolvimento
518	Científico e Tecnológico (CNPa). 76 pp. https://bityl.co/6aIL
519	Fearnside PM (2005) Deforestation in Brazilian Amazonia: history, rates, and
520	consequences. Conservation Biology 19: 680–688. https://doi.org/10.1111/j.1523-
521	1739 2005 00697.x
522	Fearnside PM (2017) Deforestation of the Brazilian Amazon Oxford Research
523	Encyclopedia of Environmental Science New York: Oxford University Press
524	https://doi.org/10.1093/acrefore/9780199389414.013.102
525	Fearnside PM (1997) Greenhouse gases from deforestation in Brazilian Amazonia: Net

526	committed emissions. Climatic Change 35: 321-360.
527	https://doi.org/10.1023/A:1005336724350
528	Fearnside PM (2018) Challenges for sustainable development in Brazilian Amazonia.
529	Sustainable Development 26(2): 141-149. https://doi.org/10.1002/sd.1725
530	Fearnside PM (2020) Changing climate in Brazil's "breadbasket". Frontiers in Ecology
531	and the Environment 18: 486-488. https://doi.org/10.1002/fee.2263
532	Fearnside PM (2022) Amazon environmental services: Why Brazil's Highway BR-319
533	is so damaging. Ambio 51: 1367-1370. https://doi.org/10.1007/s13280-022-01718-
534	Ϋ́
535	Fearnside PM, Cruz PV (2018) Chainsaw Massacre: protected areas in danger in
536	Brazil's state of Rondônia (commentary) Mongabay, 30 October 2018.
537	https://news.mongabay.com/2018/10/chainsaw-massacre-protected-areas-in-
538	danger-in-brazils-state-of-rondonia-commentary/
539	Flores BM, Montoya E, Sakschewski B, Nascimento N, Staal A, Betts RA, Levis C,
540	Lapola DM, Muelbert AE, Jakovac C, Nobre CA, Oliveira RS, Borma LS, Nian D,
541	Boers N, Hecht SB, Steege HT, Arieira J, Lucas IL, Berenguer E, Merengo JA,
542	Gatti LV, Mattos CRC, Hirota M (2024) Critical transitions in the Amazon forest
543	system. Nature 626: 555-564. https://doi.org/10.1038/s41586-023-06970-0
544	Fu R, Yin L, Li W, Arias PA, Dickinson RE, Huang L, Chakraborty S, Fernandes K,
545	Liebmann B, Fisher R, Myneni RB (2013) Increased dry-season length over
546	southern Amazonia in recent decades and its implication for future climate
547	projection. Proceedings of the National Academy of Science USA 110: 18110–
548	18115. https://doi.org/10.1073/pnas.1302584110
549	Galetti M, Alves-Costa CP, Cazetta E (2003) Effects of forest fragmentation,
550	anthropogenic edges and fruit colour on the consumption of ornithocoric fruits.
551	Biological Conservation 111: 269–273. <u>https://doi.org/10.1016/S0006-</u>
552	<u>3207(02)00299-9</u>
553	Gatagon-Surui F, Oliveira MA, Goebel LGA, Ribeiro TM, Santos DM, Mittermeier
554	RA, Rylands AB (2024) Guia de Primatas do Povo Paiter-Suruí. Editora: Re:wild.
555	https://publicacoes.even3.com.br/book/guia-de-primatas-do-povo-paiter-surui-
556	3640735
557	Godet L, Devictor V (2018) What conservation does. Trends in Ecology & Evolution
558	33: 720–730. <u>https://doi.org/10.1016/j.tree.2018.07.004</u>
559	Goebel LGA, Bogoni JA, Longo GR, Palmeirim AF, Fermiano EC, da Silva DJ, dos
560	Santos-Filho M (2025) Multi-faceted decline of vertebrate diversity in an endemism
561	zone of the Brazilian Amazon. <i>Journal for Nature Conservation</i> 126842.
562	https://doi.org/10.1016/j.jnc.2025.126842.
563	Gomes E (2012) História e Geografia de Rondônia. Vilhena: Expressa Ltda.
564	Haddad NM, Brudvig LA, Clobert J, et al. (2015) Habitat fragmentation and its lasting
565	impact on Earth's ecosystems. Science Advances 1: e1500052.
566	https://doi.org/10.1126/sciadv.1500052
567	IBGE — Instituto Brasileiro de Geografia e Estatística (2021) Bases cartográficas
568	contínuas — 1:250.000. <u>https://www.ibge.gov.br/geociencias/downloads-</u>
569	geociencias.html?caminho=cartas_e_mapas/bases_cartograficas_continuas/bc250/
570	IBGE - Instituto Brasileiro de Geografia e Estatística (2023) Cidades e Estado –
571	Rondônia. <u>https://www.ibge.gov.br/cidades-e-estados/ro.html. Accessed April</u>
572	<u>2023.</u>
573	IBGE – Instituto Brasileiro de Geografia e Estatística (2021) Terras indígenas:
574	Fundação Nacional dos Povos Indígenas; FUNAI, 2020.

575 INPE (Instituto Nacional de Pesquisas Espaciais) (2022) PRODES – Projeto de

576	Monitoramento do Desmatamento na Amazônia Legal (Terrabrasilis – Geographic
577	Data Platform. [online]. http://terrabrasilis.dpi.inpe.br/. [Accessed 06 Jul 2023].
578	IPAM – Instituto de Pesquisa Ambiental da Amazônia (Institute of Environmental
579	Research of the Amazon). Available at: https://ipam.org.br [Accessed July 2023].
580	Laurance WF. Goosem M. Laurance SG (2009) Impacts of roads and linear clearings on
581	tropical forests. Trends in Ecology & Evolution 24: 659–669.
582	https://doi.org/10.1016/i.tree.2009.06.009
583	Laurance WF. Peletier-Jellema A. Geenen B. Koster H. Verweij P. Van Dijck P.
584	Teloveiov TE. Scleicher I. Van Kuijk M (2015) Reducing the global environmental
585	impacts of rapid infrastructure expansion <i>Current Biology</i> 25: R259–R262
586	https://doi.org/10.1016/j.cub.2015.02.050
587	Laurance WF Camargo ILC Fearnside PM Lovejov TE Williamson GB Mesquita
588	RCG Mever CFL Bobrowiec PED Laurance SGW (2018) An Amazonian
589	rainforest and its fragments as a laboratory of global change <i>Biological Reviews</i>
590	93: 223_247 https://doi.org/10.1111/bry.12343
591	Lanola DM Pinho P Barlow L et al. (2023) The drivers and impacts of Amazon Forest
592	degradation Science 379: eabn8622 https://doi.org/10.1126/science.abn8622
593	Leite-Filho AT Costa MH Fu R (2020) The southern Amazon rainy season: the role of
594	deforestation and its interactions with large-scale mechanisms. <i>International</i>
595	<i>Journal of Climatology</i> 40: 2328–2341 https://doi.org/10.1002/joc.6335
596	Leite-Filho AT Soares-Filho BS Davis II. Abrahão GM Börner I (2021)
597	Deforestation reduces rainfall and agricultural revenues in the Brazilian Amazon
598	Nature Communications 12: 2591. https://doi.org/10.1038/s41467-021-22840-7
599	Magioli M Rios E Benchimol M et al. (2021) The role of protected and unprotected
600	forest remnants for mammal conservation in a megadiverse Neotropical hotspot.
601	Biological Conservation 259: 109173.
602	https://doi.org/10.1016/i.biocon.2021.109173
603	Malcolm JR (1994) Edge effects in central Amazonian forest fragments. <i>Ecology</i> 75:
604	2438–2445. https://doi.org/10.2307/1940897
605	Marsh CJ. Sica YV. Burgin CJ. et al. (2022) Expert range maps of global mammal
606	distributions harmonised to three taxonomic authorities. <i>Journal of Biogeography</i>
607	49: 979–992. https://doi.org/10.1111/ibi.14330
608	Melo FP, Arrovo-Rodríguez V, Fahrig L, Martínez-Ramos M, Tabarelli M (2013) On
609	the hope for biodiversity-friendly tropical landscapes. <i>Trends in Ecology &</i>
610	<i>Evolution</i> 28: 462–468. https://doi.org/10.1016/i.tree.2013.01.001
611	Ministério do Meio Ambiente (MMA) (2011) Planos de Acão para a Prevenção e o
612	Controle do Desmatamento. Documento Base: Contexto e Análises.
613	Moreira RCS, Maciel LAP, Fernandes Netto FL, Vieira MVC (2022) Análise da
614	política florestal e estratégia de gestão e monitoramento dos ativos florestais no
615	estado de Rondônia. <i>Diálogos</i> [Porto Velho] 6(1):1–15.
616	https://periodicos.saolucas.edu.br/index.php/dialogos/article/download/1927/1500
617	Neteler M. Bowman MH. Landa M. Metz M (2012) GRASS GIS: A multi-purpose
618	open source GIS. Environmental Modelling & Software 31: 124–130.
619	https://doi.org/10.1016/i.envsoft.2011.11.014
620	Niebuhr BBS. Vancine MH. Martello F. Ribeiro JW. Muylaert RL. Campos VEW.
621	Santos JS, Tonetti VR, Ribeiro MC (in preparation) Landscape Metrics
622	(LSMetrics): a spatially explicit tool for calculating connectivity and other
623	ecologically-scaled landscape metrics. https://github.com/LEEClab/LS_METRICS
624	Noss RF, Dobson AP, Baldwin R, Beier P, Davis CR. Dellasala DA. Francis J. Locke
625	H, Nowak K, Lopez R, Reining C, Trombulak SC, Tabor G (2012) Bolder thinking

626 for conservation. Conservation Biology 26: 1-4. 627 https://www.jstor.org/stable/41416122 Palmeirim AF, Santos-Filho M, Peres CA (2020) Marked decline in forest-dependent 628 629 small mammals following habitat loss and fragmentation in an Amazonian deforestation frontier. PLoS One 15: e0230209. 630 631 https://doi.org/10.1371/journal.pone.0230209 632 Palmeirim AF, Emer C, Benchimol M, Storck-Tonon D, Bueno AS, Peres CA (2022) 633 Emergent properties of species-habitat networks in an insular forest landscape. 634 Science Advances 8: eabm0397. https://doi.org/10.1126/sciadv.abm0397 635 Piontekowsk VJ, Ribeiro, FP, Matricardi EAT, Junio IML, Bussinguer AP, Gatto A (2019) Modeling deforestation in the state of Rondônia. Floresta e Ambiente 26(3): 636 e20180441 https://doi.org/10.1590/2179-8087.044118 637 Pires MM, Benchimol M, Cruz LR, Peres CA (2023) Terrestrial food web complexity 638 639 in Amazonian forests decays with habitat loss. Current Biology 33: 389-396. 640 https://doi.org/10.1016/j.cub.2022.11.066 641 QGIS Development Team (2023) QGIS Geographic Information System. Open Source Geospatial Foundation Project. 642 643 Oin Y, Xiao X, Liu F, Sa e Silva F, Shimabukuro Y, Arai E, Fearnside PM (2023) 644 Forest conservation in Indigenous territories and protected areas in the Brazilian 645 Amazon. Nature Sustainability 6: 295–305. https://doi.org/10.1038/s41893-022-646 01018-z 647 R Core Team (2023) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 648 Raven PH, Gereau RE, Phillipson PB, Chatelain C, Jenkins CN, Ulloa Ulloa C (2020) 649 650 The distribution of biodiversity richness in the tropics. Science Advances 6: eabc6228. https://doi.org/10.1126/sciadv.abc6228 651 652 Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian 653 Atlantic Forest: How much is left, and how is the remaining forest distributed? 654 Implications for conservation. Biological Conservation 142: 1141–1153. https://doi.org/10.1016/j.biocon.2009.02.021 655 656 Souza Jr CM, Shimbo JZ, Rosa MR, et al. (2020) Reconstructing three decades of land 657 use and land cover changes in Brazilian biomes with Landsat Archive and Earth 658 Engine. Remote Sensing 12: 2735. https://doi.org/10.3390/rs12172735 Sze JS, Childs DZ, Carrasco LR, Edwards DP (2022) Indigenous Territories in 659 660 protected areas have high forest integrity across the tropics. Current Biology 32: 661 4949-4956. https://doi.org/10.1016/j.cub.2022.09.040 662 Turner MG, Gardner RH (2015) Landscape Ecology in Theory and Practice. Springer New York, New York, NY. 663 Vancine MH, Muylaert RL, Niebuhr BB, Oshima JEDF, Tonetti V, Bernardo R, De 664 665 Angelo CA, Rosa MR, Grohmann CH, Ribeiro MC (2024) The Atlantic Forest of South America: spatiotemporal dynamics of remaining vegetation and implications 666 for conservation. Biological Conservation 291: 110499. 667 https://doi.org/10.1016/j.biocon.2024.110499 668 669 Van Moorter B, Kivimäki I, Panzacchi M, Saura S, Brandão Niebuhr B, Strand O, 670 Saerens M (2023) Habitat functionality: Integrating environmental and geographic 671 space in niche modeling for conservation planning. Ecology 104: e4105. 672 https://doi.org/10.1002/ecy.4105 673 West TA, Fearnside PM (2021) Brazil's conservation reform and the reduction of 674 deforestation in Amazonia. Land Use Policy 100: 105072. 675 https://doi.org/10.1016/j.landusepol.2020.105072

676 Young HS, McCauley DJ, Galetti M, Dirzo R (2016) Patterns, causes, and
677 consequences of anthropocene defaunation. *Annual Review of Ecology, Evolution,*678 *and Systematics* 47: 333–358. <u>https://doi.org/10.1146/annurev-ecolsys-112414-</u>
679 <u>054142</u>
680

Figure 1. Vegetation dynamics over 1986-2020 at five-year intervals for the whole of
Rondônia (Brazilian Amazon). In 2020, we highlighted the remaining native vegetation
(NV) and the limits of protected areas and Indigenous territories.

684

Figure 2. Percentages of vegetation cover of the different types in the state of Rondônia
(Native Vegetation with roads trimmed) from 1986 to 2020. NV = native vegetation, FF
= forest formations, SF = savanna formations, WT = wetlands and GL = grasslands.

688

Figure 3. Distribution of the (a) thousandth of fragments and (b) mean size of fragments
of forest vegetation and native vegetation (including forests) in Rondônia from 1986 to
2020 (with roads trimmed).

692

Figure 4. Cumulative percentages of (a-b) area and (c-d) per edge-proximity class for
the forest vegetation and native vegetation (including forests) remaining (with roads
trimmed) in Rondônia. Note log10 scale of edge distance s continuum in a-b, but not
log10 distances in categorical c-d.

697

Figure 5. (a-b) Expected cluster size (mean functional size; ha on log₁₀ scale) of
functionally connected forest vegetation and native vegetation fragments, for different
functional distance values with roads trimmed (meters), and (c-d) largest functionally
connected vegetation cluster (% of total remaining FV and NV) estimated at various
functional distances (meters) for Rondônia.

703

Figure 6. Influence of smallest fragment size (ha) on isolation (m) in Rondônia: (a) forest
vegetation fragments and (b) native vegetation fragments. Fragment sizes: 0 ha (all), 50
ha, 100 ha, 150 ha, 200 ha, 250 ha, 350 ha, 500 ha, 1000 ha. Percentages of remaining
vegetation in Rondônia (area and percentage) by distance class (meters, with roads
trimmed and railways) from protected areas: (c) forest vegetation and (d) native
vegetation (including forests); and from Indigenous territories: (d) forest vegetation and
(e) native vegetation (including forests).

711

Supplementary Material

Figure S1. Distribution of the total areas of Forest Vegetation (FV) in 1986 (a) and 2020 (b) and Native Vegetation (NV) fragments in 1986 (c) and 2020 (d) in Rondônia, where: %A = percentage of the total area; %NF = percentage of the number of fragments. Note the different scales in the x-axis between the FV and NV plots.

Table	S1.	Land-use	and	land-cover	codes	and	MapBiomas	classes	used	to	compose
"Fores	st Ve	getation" ((FV)	and "Native	e Veget	ation	" (NV).				

Vegetation class	Land use and land cover	Land-use and land- cover abbreviation	MapBiomas class code
Forest	Forest Formation	FF	3
(FV)	Savanna Formation	SF	4
-	Forest Formation	FF	3
Native	Savanna Formation	SF	4
Vegetation	Wetland	WT	11
(NV)	Native Vegetation	NV	10
	Grassland	GL	12

Metric	Description	Class
Number of fragments and fragment size	Number of fragments, fragment size and percentage of habitat cover in different size classes.	fragment size classes (ha): <1, 1–5, 5–10, 10–50, 50–100, 100–250, 250– 500, 500–1000, 1000–2500, 2500– 5000, 5000–10000, 10000–25000, 25000–50000, 50000–100000, 100000–250000, 250000–500000, 500000–1000000, and >1000000.
Vegetation cover, fragment size and number of fragments	Areas of fragments that showed increase, reduction, or that that remained stable through time, and the area and number of fragments that appeared or disappeared.	Values in Figure S4
Edge area	Percentage of habitat area submitted to edge effects for different edge widths.	Edge widths (m) (pixel size): <30, 30–90, 90–240, 240–510, 510–1020, 1020–2520, 2520–5010, 5010– 11010, and 11010–32010.
Functional connectivity	Area of functionally connected fragments, considering different distance rules for fragment linkage.	Gap-crossing (m) (pixel size): 0, 60, 120, 180, 240, 300, 600, 900, 1200, and 1500.
Mean isolation	Meandistance to the nearest habitat fragment. To analyse the effect of small fragments in estimating isolation, the smallest fragments were successively removed.	Size of the small fragments removed (ha): 0 (i.e., no fragments removed), <50, <100, <150, <200, <250, <350, <500, and <1000.
Distance from Protected Areas and Indigenous Territories	Distance of any given habitat pixel to the nearest Protected Area or Indigenous Territory.	Distance classes (m): 0 (i.e., inside a Protected Area or Indigenous Territories), <100, 100–250, 250– 500, 500–1000, 1000–2500, 2500– 5000, 5000–10000, 10000–25000, 25000–50000, and >50000.

Table S2. Landscape metrics used to analyse the structure of landscapes in Rondônia.

Year	Scenario	Classes	Class Abbreviation	Class Description	Area (ha)	Р
1986	Forest vegetation (not trimmed)	3	FF	Forest formation	20267325	85.35
1986	Forest vegetation (not trimmed)	1	FV	Forest vegetation	20267325	85.35
1986	Forest vegetation (trimmed)	3	FF	Forest formation	20265944	85.34
1986	Forest vegetation (trimmed)	1	FV	Forest vegetation	20265944	85.34
1986	Natural vegetation (not trimmed)	3	FF	Forest formation	20267325	85.35
1986	Natural vegetation (not trimmed)	4	SF	Savanna formation	552664.3	2.33
1986	Natural vegetation (not trimmed)	11	WT	Wetland	65593.44	0.28
1986	Natural vegetation (not trimmed)	12	GL	Grassland	716891.8	3.02
1986	Natural vegetation (not trimmed)	10	NV	Natural vegetation	21602475	90.98
1986	Natural vegetation (trimmed)	3	FF	Forest formation	20265944	85.34
1986	Natural vegetation (trimmed)	4	SF	Savanna formation	550895.8	2.32
1986	Natural vegetation (trimmed)	11	WT	Wetland	65560.23	0.28
1986	Natural vegetation (trimmed)	12	GL	Grassland	715709.4	3.01
1986	Natural vegetation (trimmed)	10	NV	Natural vegetation	21598109	90.95
1990	Forest vegetation (not trimmed)	3	FF	Forest formation	19685467	82.9
1990	Forest vegetation (not trimmed)	1	FV	Forest vegetation	19685467	82.9
1990	Forest vegetation (trimmed)	3	FF	Forest formation	19684282	82.9
1990	Forest vegetation (trimmed)	1	FV	Forest vegetation	19684282	82.9
1990	Natural vegetation (not trimmed)	3	FF	Forest formation	19685467	82.9
1990	Natural vegetation (not trimmed)	4	SF	Savanna formation	548185.4	2.31

Table S3. Remaining FV and NV classes in Rondônia between 1986 and 2020 with roads trimmed and not trimmed . Area values (hectares) are presented for each year and vegetation scenario, the following.

1990	Natural vegetation (not trimmed)	11	WT	Wetland	60517.71	0.25
1990	Natural vegetation (not trimmed)	12	GL	Grassland	693356.6	2.92
1990	Natural vegetation (not trimmed)	10	NV	Natural vegetation	20987526	88.38
1990	Natural vegetation (trimmed)	3	FF	Forest formation	19684282	82.9
1990	Natural vegetation (trimmed)	4	SF	Savanna formation	546457.3	2.3
1990	Natural vegetation (trimmed)	11	WT	Wetland	60471.27	0.25
1990	Natural vegetation (trimmed)	12	GL	Grassland	692264.8	2.92
1990	Natural vegetation (trimmed)	10	NV	Natural vegetation	20983475	88.37
1995	Forest vegetation (not trimmed)	3	FF	Forest formation	18306038	77.09
1995	Forest vegetation (not trimmed)	1	FV	Forest vegetation	18306038	77.09
1995	Forest vegetation (trimmed)	3	FF	Forest formation	18305162	77.09
1995	Forest vegetation (trimmed)	1	FV	Forest vegetation	18305162	77.09
1995	Natural vegetation (not trimmed)	3	FF	Forest formation	18306038	77.09
1995	Natural vegetation (not trimmed)	4	SF	Savanna formation	547394.1	2.31
1995	Natural vegetation (not trimmed)	11	WT	Wetland	49597.02	0.21
1995	Natural vegetation (not trimmed)	12	GL	Grassland	715179.8	3.01
1995	Natural vegetation (not trimmed)	10	NV	Natural vegetation	19618209	82.62
1995	Natural vegetation (trimmed)	3	FF	Forest formation	18305162	77.09
1995	Natural vegetation (trimmed)	4	SF	Savanna formation	545689.3	2.3
1995	Natural vegetation (trimmed)	11	WT	Wetland	49556.16	0.21
1995	Natural vegetation (trimmed)	12	GL	Grassland	714204.7	3.01
1995	Natural vegetation (trimmed)	10	NV	Natural vegetation	19614612	82.61
2000	Forest vegetation (not trimmed)	3	FF	Forest formation	16927429	71.29
2000	Forest vegetation (not trimmed)	1	FV	Forest vegetation	16927429	71.29
2000	Forest vegetation (trimmed)	3	FF	Forest formation	16926819	71.28
2000	Forest vegetation (trimmed)	1	FV	Forest vegetation	16926819	71.28
2000	Natural vegetation (not trimmed)	3	FF	Forest formation	16927429	71.29
2000	Natural vegetation (not trimmed)	4	SF	Savanna formation	534601.2	2.25

2000	Natural vegetation (not trimmed)	11	WT	Wetland	89160.3	0.38
2000	Natural vegetation (not trimmed)	12	GL	Grassland	721445.7	3.04
2000	Natural vegetation (not trimmed)	10	NV	Natural vegetation	18272636	76.96
2000	Natural vegetation (trimmed)	3	FF	Forest formation	16926819	71.28
2000	Natural vegetation (trimmed)	4	SF	Savanna formation	532966.3	2.24
2000	Natural vegetation (trimmed)	11	WT	Wetland	89119.17	0.38
2000	Natural vegetation (trimmed)	12	GL	Grassland	720526.2	3.03
2000	Natural vegetation (trimmed)	10	NV	Natural vegetation	18269430	76.93
2005	Forest vegetation (not trimmed)	3	FF	Forest formation	15155238	63.82
2005	Forest vegetation (not trimmed)	1	FV	Forest vegetation	15155238	63.82
2005	Forest vegetation (trimmed)	3	FF	Forest formation	15154726	63.82
2005	Forest vegetation (trimmed)	1	FV	Forest vegetation	15154726	63.82
2005	Natural vegetation (not trimmed)	3	FF	Forest formation	15155238	63.82
2005	Natural vegetation (not trimmed)	4	SF	Savanna formation	520435.1	2.19
2005	Natural vegetation (not trimmed)	11	WT	Wetland	80114.76	0.34
2005	Natural vegetation (not trimmed)	12	GL	Grassland	706306.5	2.97
2005	Natural vegetation (not trimmed)	10	NV	Natural vegetation	16462095	69.32
2005	Natural vegetation (trimmed)	3	FF	Forest formation	15154726	63.82
2005	Natural vegetation (trimmed)	4	SF	Savanna formation	518869.2	2.19
2005	Natural vegetation (trimmed)	11	WT	Wetland	80073.99	0.34
2005	Natural vegetation (trimmed)	12	GL	Grassland	705395.3	2.97
2005	Natural vegetation (trimmed)	10	NV	Natural vegetation	16459065	69.32
2010	Forest vegetation (not trimmed)	3	FF	Forest formation	14646252	61.68
2010	Forest vegetation (not trimmed)	1	FV	Forest vegetation	14646252	61.68
2010	Forest vegetation (trimmed)	3	FF	Forest formation	14645774	61.68
2010	Forest vegetation (trimmed)	1	FV	Forest vegetation	14645774	61.68
2010	Natural vegetation (not trimmed)	3	FF	Forest formation	14646252	61.68
2010	Natural vegetation (not trimmed)	4	SF	Savanna formation	519467	2.19

2010	Natural vegetation (not trimmed)	11	WT	Wetland	83963.79	0.35
2010	Natural vegetation (not trimmed)	12	GL	Grassland	712563.7	3
2010	Natural vegetation (not trimmed)	10	NV	Natural vegetation	15962247	67.22
2010	Natural vegetation (trimmed)	3	FF	Forest formation	14645774	61.68
2010	Natural vegetation (trimmed)	4	SF	Savanna formation	517894.6	2.18
2010	Natural vegetation (trimmed)	11	WT	Wetland	83921.58	0.35
2010	Natural vegetation (trimmed)	12	GL	Grassland	711626.4	3
2010	Natural vegetation (trimmed)	10	NV	Natural vegetation	15959217	67.21
2015	Forest vegetation (not trimmed)	3	FF	Forest formation	14226794	59.91
2015	Forest vegetation (not trimmed)	1	FV	Forest vegetation	14226794	59.91
2015	Forest vegetation (trimmed)	3	FF	Forest formation	14226264	59.91
2015	Forest vegetation (trimmed)	1	FV	Forest vegetation	14226264	59.91
2015	Natural vegetation (not trimmed)	3	FF	Forest formation	14226794	59.91
2015	Natural vegetation (not trimmed)	4	SF	Savanna formation	521328.3	2.2
2015	Natural vegetation (not trimmed)	11	WT	Wetland	119357	0.5
2015	Natural vegetation (not trimmed)	12	GL	Grassland	709641.9	2.99
2015	Natural vegetation (not trimmed)	10	NV	Natural vegetation	15577121	65.6
2015	Natural vegetation (trimmed)	3	FF	Forest formation	14226264	59.91
2015	Natural vegetation (trimmed)	4	SF	Savanna formation	519726.2	2.19
2015	Natural vegetation (trimmed)	11	WT	Wetland	119291.2	0.5
2015	Natural vegetation (trimmed)	12	GL	Grassland	708660.4	2.98
2015	Natural vegetation (trimmed)	10	NV	Natural vegetation	15573941	65.58
2020	Forest vegetation (not trimmed)	3	FF	Forest formation	13551764	57.07
2020	Forest vegetation (not trimmed)	1	FV	Forest vegetation	13551764	57.07
2020	Forest vegetation (trimmed)	3	FF	Forest formation	13551254	57.07
2020	Forest vegetation (trimmed)	1	FV	Forest vegetation	13551254	57.07
2020	Natural vegetation (not trimmed)	3	FF	Forest formation	13551764	57.07
2020	Natural vegetation (not trimmed)	4	SF	Savanna formation	507027	2.14

2020	Natural vegetation (not trimmed)	11	WT	Wetland	90891.81	0.38
2020	Natural vegetation (not trimmed)	12	GL	Grassland	740395.1	3.12
2020	Natural vegetation (not trimmed)	10	NV	Natural vegetation	14890077	62.71
2020	Natural vegetation (trimmed)	3	FF	Forest formation	13551254	57.07
2020	Natural vegetation (trimmed)	4	SF	Savanna formation	505455.4	2.13
2020	Natural vegetation (trimmed)	11	WT	Wetland	90829.89	0.38
2020	Natural vegetation (trimmed)	12	GL	Grassland	739354.1	3.11
2020	Natural vegetation (trimmed)	10	NV	Natural vegetation	14886894	62.69

Table S4. The remaining PV and NV for Rondônia between 1986 and 2020 with roads trimmed and not trimmed. For each year and vegetation scenario the following values are presented: total percentage, number of fragments, and descriptive statistics (mean, standard deviation, median and maximum) in hectares.

Year	Scenario	Percentage	Numbers of patches	Total area (ha)	Mean area (ha)	Standard deviation area (ha)	Median area (ha)	Maximum area (ha)
1986	FV not trimmed	12.45	24406	20267325	830	101723	1.71	15597491
1986	FV trimmed	12.45	24831	20265944	816	81851	1.62	12263543
1986	NV not trimmed	13.27	22636	21602475	954	133718	1.26	20078603
1986	NV trimmed	13.27	25113	21598109	860	89636	1.17	13577564
1990	FV not trimmed	12.1	28842	19685467	683	82449	1.8	13665360
1990	FV trimmed	12.1	29316	19684282	671	69693	1.8	11422423
1990	NV not trimmed	12.9	29862	20987526	703	106677	1.44	18371290
1990	NV trimmed	12.89	32470	20983475	646	74033	1.26	12846565
1995	FV not trimmed	11.25	46761	18306038	391	57495	1.8	12125435
1995	FV trimmed	11.25	47141	18305162	388	49331	1.8	10247761
1995	NV not trimmed	12.05	50035	19618209	392	74095	1.53	16509993
1995	NV trimmed	12.05	52889	19614612	371	52640	1.44	11668219

2000	FV not trimmed	10.4	50375	16927429	336	49014	2.43	10735249
2000	FV trimmed	10.4	50692	16926819	334	42492	2.43	9184748
2000	NV not trimmed	11.23	62244	18272636	294	59204	1.8	14723175
2000	NV trimmed	11.23	65029	18269430	281	43298	1.71	10660532
2005	FV not trimmed	9.31	62759	15155238	241	37025	2.61	9097977
2005	FV trimmed	9.31	63064	15154726	240	31975	2.61	7762568
2005	NV not trimmed	10.12	78709	16462095	209	38663	1.89	10668787
2005	NV trimmed	10.11	81470	16459065	202	32746	1.8	9068834
2010	FV not trimmed	9	65804	14646252	223	33217	2.7	8364277
2010	FV trimmed	9	66114	14645774	222	23112	2.7	5305775
2010	NV not trimmed	9.81	82892	15962247	193	35681	1.98	10137164
2010	NV trimmed	9.81	85838	15959217	186	29941	1.89	8520154
2015	FV not trimmed	8.74	71405	14226794	199	30347	2.7	7960782
2015	FV trimmed	8.74	71788	14226264	198	26254	2.7	6778197
2015	NV not trimmed	9.57	89178	15577121	175	33004	1.98	9729611
2015	NV not trimmed	9.57	92306	15573941	169	27468	1.89	8093592
2020	FV not trimmed	8.33	77354	13551764	175	27739	2.79	7584067
2020	FV trimmed	8.33	77730	13551254	174	23844	2.79	6405106
2020	NV not trimmed	9.15	97764	14890077	152	29933	1.98	9247364
2020	NV trimmed	9.15	100874	14886894	148	24976	1.89	7697136