

EGU24-6369, updated on 02 Apr 2024 https://doi.org/10.5194/egusphere-egu24-6369 EGU General Assembly 2024 © Author(s) 2024. This work is distributed under the Creative Commons Attribution 4.0 License.

Prediction of forest degradation as a subsidy for mitigating actions to preventing fires and wildfires in a new Amazonian frontier

Liana Anderson¹, Débora Dutra¹, Chris Jones², Guilherme Mataveli^{3,4}, Igor Ferreira³, Henrique Leão¹, Beatriz Cabral¹, Philip Fearnside⁵, Paulo Graça⁵, Aurora Yanai⁵, Celso Silva Junior⁶, Thaís Medeiros³, Ricardo Dalagnol^{7,8}, Daniel Braga⁹, Vinícius Peripato³, Chantelle Burton², Richard Betts², and Luiz Aragão^{3,11}

¹National Center for Monitoring and Early Warning of Natural Disasters, São José dos Campos 12247-016, Brazil (liana.anderson@gmail.com)

²Met Office Hadley Centre, Exeter EX1 3PB, UK (chris.d.jones@metoffice.gov.uk, chantelle.burton@metoffice.gov.uk, richard.betts@metoffice.gov.uk)

³Earth Observation and Geoinformatics Division, National Institute for Space Research, São José dos Campos 12227-010, Brazil (guilhermemataveli@gmail.com, igor_malfetoni@hotmail.com, thaispmedeiros97@gmail.com, vinicius.peripato@gmail.com, luiz.aragao@inp

⁴School of Environmental Sciences, Tyndall Centre for Climate Change Research, University of East Anglia, Norwich NR4 7TJ, UK (guilhermemataveli@gmail.com)

⁵National Institute for Research in Amazonia, Manaus 69067-375, Brazil (philip.fearnside@gmail.com,

pmalencastro@gmail.com, aurorayanai@gmail.com)

⁶6Amazon Environmental Research Institute, Brasília- DF, 70863-520 (celsohlsj@gmail.com)

⁷Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91011, USA (silva.rdd@gmail.com)

⁸Institute of Environment and Sustainability, University of California, Los Angeles, CA 90095, USA (silva.rdd@gmail.com)

⁹Federal University of Santa Catarina, Florianopolis 88040-900, Brazil (danielalvezbraga@gmail.com)

¹¹Geography, University of Exeter, Exeter EX4 4PY, UK (luiz.aragao@inpe.br)

Anthropogenic disturbances stand as the primary driver of degradation in the remaining Amazon forests, posing a significant threat to their future. Notable among these disturbances are edge effects, timber extraction, fire, extreme droughts and temperatures, which have been intensified by human-induced climate change. A pilot study aiming to integrate forest fire occurrence, timber extraction and climate change scenarios was developed for a new deforestation frontier in southwestern Amazonia. We integrated a series of remote sensing fire products, spatialized land tenure information, selective logging mapping techniques and Global Climate Models (GCMs) simulated projections of three SSPs (SSP climate forcing scenarios) for 2015–2100 period. The results showed that the increased deforestation trend occurred between 2003 and 2019 predominantly on public lands, following the implementation of the new forest code. This surge contributed to a spike in fires, escalating from 66% to 84% in 2019. Over the period from 2007 and 2019, 2.4% of the primary forest was logged. By 2022, precipitation values aligned closely with SSP 5-8.5, and temperature values neared SSP 3-7.0. Projections for 2100 indicated an alarming increase of 5.19 °C in overall temperature and a reduction of 55 mm in annual precipitation compared to 2003 baseline. The results indicate that the study region is already heading towards a

less sustainable future. Logging activities, as well as agricultural production, are threatened by both increase in economic losses by fires and temperatures, and rainfall reduction. Implementing mitigation measures, such as fire-free land management, traceability controls for all wood production from logged forests, and addressing issues of land tenure and regulation are pivotal in steering the current development pathway towards a more sustainable pathway.